250. Physical Properties and Chemical Constitution. Part III. cycloPentane, cycloHexane, cycloHeptane, and some Derivatives. The Multiplanar Structure of the Methylcyclohexane Ring.

Abstract

By Arthur I. Vogel. The surface tensions and densities over a range of temperatures, and the refractive indices for the $\mathrm{C}, \mathrm{D}, \mathrm{F}$, and G lines at 20° have been measured for pure cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, cycloheptane, and the related ketones, alcohols, and unsaturated hydrocarbons, together with a number of methylene compounds. The parachors, molecular refractivities, dispersions, and molecular refraction coefficients have been evaluated. Several forms of methylcyclohexane have been isolated; this provides evidence for the multiplanar structure of the simple cyclohexane ring.

In continuation of the work described in Parts I and II (J., 1934, 333, 1758), the above physical properties have been measured for the compounds enumerated. The comparison of the observed with the theoretical values must await new data now being obtained, for there is some uncertainty in the values for the structural and atomic parachors and possibly in those for the refractivities. For example, for $\mathrm{CH}_{2}, \mathrm{C}$, and H respectively the recorded parachors are : 39.0, 4.8, and $17 \cdot 1$ (Sugden, J., 1924, 125, 1180) ; 40.0, 9.2, and $15 \cdot 4$ (Mumford and Phillips, J., 1929, 2112) ; 40•3, $11 \cdot 5$, and $14 \cdot 4$ (Vogel, Part II, loc. cit.).

The method adopted for the preparation of the pure hydrocarbons consisted in reducing the pure ketone to the secondary alcohol by means of sodium and moist ether, dehydrating the alcohol with phosphoric oxide, and reducing the resultant unsaturated hydrocarbon with Adams's platinum catalyst and hydrogen. The constitutions of the unsaturated hydrocarbons from cyclopentanol, methylcyclopentanol, and cyclohexanol thus prepared are unambiguous, but, contrary to the statement of Harries and Tank (Ber., 1908, 41, 1709), cycloheptanol yielded a mixture of cycloheptene and a methylcyclohexene (see Experimental). Pure cycloheptane was ultimately prepared according to the scheme:

$$
c y c l o \mathrm{Heptanol} \xrightarrow{\mathrm{PBr}_{3}} \text { cycloheptyl bromide } \xrightarrow{\text { alc. } \mathrm{KOH}} \text { cycloheptene } \xrightarrow{\mathrm{Pt}, \mathrm{H}_{3}} \text { cycloheptane }
$$

The dehydration with phosphoric oxide of 2-, 3-, and 4-methylcyclohexanols gave largely two methylcyclohexenes, almost identical products being obtained from the 3- and the 4 R

4 -methyl compound. These two differed from l-methyl- $\Delta^{\mathbf{1}}$-cyclohexene produced by the facile dehydration of 1 -methylcyclohexanol with a little iodine. It would therefore appear that 2 -methylcyclohexanol yields chiefly the Δ^{2}-compound, but 3 - and 4 -methylcyclohexanols yield largely the Δ^{3}-compound. There is some uncertainty in the literature concerning the pure Δ^{2}-compound, but the physical properties (density and refractive index) of the pure Δ^{1}-compound (compare Wallach, Annalen, 1908, 359, 298; v. Auwers, ibid., 1915, 410, 300 ; Nametkin and Jarzew, Ber., 1923, 56, 1803) and of the Δ^{3}-hydrocarbon (Nametkin and Brussov, ibid., p. 1807) appear to be well established. The ready isomerisation of the methylcyclohexenes in the presence of the various dehydrating agents employed by other workers doubtless accounts for the diverse boiling points, densities, and refractive indices recorded (v . Auwers, loc. cit.). It would seem that, if appreciable isomerisation occurred in the presence of phosphoric oxide, then the same mixture should be obtained in every dehydration with this reagent; this, however, was not the case. Experiments are in progress with a view to prepare the pure unsaturated hydrocarbons by the method used for cycloheptene, and also to establish their constitution and homogeneity by ozonolysis and other means.
cycloPentene, methylcyclopentene, cyclohexene, and cycloheptene were readily reduced in alcoholic solution with Adams's platinum catalyst and hydrogen, although the velocity of hydrogenation varied with the compound (cf. Godchot, Bull. Soc. chim., 1934, 1, 1157). With the methylcyclohexenes from 2-, 3-, and 4-methylcyclohexanols, 60-80\% reduction occurred in about 30 hours, after which the reaction became extremely slow; to obtain complete reduction it was necessary to remove the alcohol and continue the reduction in the absence of a solvent. Satisfactory reduction of 1 -methyl- $\Delta^{\mathbf{1}}$-cyclohexene could only be carried out in the absence of a solvent and was complete after 84 hours.

The most remarkable results were obtained with the methylcyclohexenes. The same methylcyclohexane was produced from the Δ^{1}-compound and from the dehydration products of 3- and 4-methylcyclohexanols; for the first-named, which was undoubtedly homogeneous, the methylcyclohexane (A) had $d_{4}^{20 \cdot 0^{\circ}} 0.7704, n_{\mathrm{C}}^{20 \cdot 0^{\circ}} 1 \cdot 42167, n_{\mathrm{D}}^{20 \cdot 0^{\circ}} 1 \cdot 42410, n_{\mathrm{F}}^{20 \cdot 0^{\circ}}$ $1 \cdot 42915, n_{6}^{20 \cdot 0^{\circ}} 1.43301$. The methylcyclohexane (B) from 2 -methylcyclohexanol had $d_{4}^{20 \cdot 0}$ $0 \cdot 7679, n_{\mathrm{C}}^{20.0^{\circ}} 1.42081, n_{\mathrm{D}}^{20 \cdot 0^{\circ}} 1.42306, n_{\mathrm{F}}^{20 \cdot 0^{\circ}} 1.42839, n_{\mathrm{G}^{2}}^{20.0^{\circ}} 1.43230$; upon standing at room temperature for several days, or more rapidly upon warming for a short time at $40-60^{\circ}$, this yielded an apparently stable form (B^{\prime}) with $d_{40^{\circ}}^{20 \cdot 0^{\circ}} 0.7694, n_{\mathrm{C}}^{20.00} 1 \cdot 42093, n_{\mathrm{D}}^{20 \cdot 00} 1 \cdot 42316$, $n_{\mathrm{F}}^{2 \cdot 0^{\circ}} 1 \cdot 42846, n_{\mathrm{G}}^{20 \cdot 00} 1 \cdot 43250$. The existence of two seemingly stable, (A) and $\left(B^{\prime}\right)$, and one unstable form (B), of the methylcyclohexane ring provides definite experimental evidence for the multiplanar structure of the ring. The problem as to which of these represents the "chair" or " Z," " boat" or " C " forms, or mixtures of these two will be discussed when experiments now in progress have been completed. Meanwhile, it is necessary to point out that these physical properties differ considerably from those of ethylcyclopentane for which Eisenlohr (Fortschr. Chem. Physik, 1925, 18, Heft 9, p. 23) gives b. p. $100 \cdot 5-101 \cdot 0^{\circ} / 756 \mathrm{~mm}$., $d_{40^{20^{\circ}}}^{20.7610,} n_{a}^{20^{\circ}} 1.41612, n_{\mathrm{He}}^{20^{\circ}} 1.41840, n_{\beta}^{20^{\circ}} 1 \cdot 42332$, $n_{\gamma}^{20^{\circ}} 1 \cdot 42798$. Furthermore, Cohen (Proc. Roy. Acad. Amsterdam, 1934, 37, 532), on the basis of geometrical analysis, has suggested two configurations for cyclohexane, one " fixed," represented by the " Z " modification, and the other " mobile," having an infinite number of modifications, of which the " C " form is one.

Qudrat-i-Khuda's claim (J. Indian Chem. Soc., 1931, 8, 277; Nature, 1935, 136, 301) that 4-methylcyclohexane-1-acetic-2-carboxylic acid could be obtained in four forms was not confirmed by Goldschmidt and Gräfinger (Ber., 1935, 68, 279), and Dey and Linstead (J., 1935,1063) have shown that his second form of $\beta \beta$-dimethylcyclohexanone (Nature, 1933, 132, 210) is in reality $2: 4: 4$-trimethylcyclopentanone, a molecular rearrangement having taken place in the Clemmensen reduction of the dimethyldihydroresorcinol. It seems very probable that one of the alleged acetylcyclohexanes obtained by Zelinsky and Tarassowa (Annalen, 1934, 508, 115) by the action of aluminium chloride or bromide and acetyl chloride upon cyclohexane, followed by catalytic reduction with platinum-black in methylalcoholic solution, contains or is a methylacetylcyclopentane for the following reasons : (i) cycloHexane when heated with aluminium chloride at 80° passes into methylcyclopentane (Zelinsky and Turowa-Pollak, Ber., 1932, 65, 1171). (ii) The physical properties do not
differ markedly from those of l-acetyl-2-methylcyclopentane, as can be seen from the following table :

Substance.	B. p.	$d^{20}{ }^{20}$.	$n_{\text {D }}^{20^{\circ}}$.	M. p. of semicarbazone.
Acetylcyclohexane (form A)	$63^{\circ} / 13 \mathrm{~mm}$.	0.9012	1.4438	150-151 ${ }^{\circ}$
Acetylcyclohexane (form B)	76-76.5/27 mm.	0.9117	$1 \cdot 4470$	171-172
1-Acetyl-2-methylcyclopentane	$59 \cdot 8-60 / 15 \mathrm{~mm}$.	$0 \cdot 8983$	$1 \cdot 4420$	162

(iii) No evidence is presented as to the source or homogeneity of the cyclohexane employed.

Furthermore, Miller and Adams (J. Amer. Chem. Soc., 1936, 58, 787) were unable to isolate more than one form of $4: 4$-dimethylcyclohexane-1 :1-diacetic or -1-carboxylic-1acetic acid or 4 -methylcyclohexane-1:1-diacetic acid in spite of an exhaustive search. It would therefore appear that the author's results supply the first direct experimental evidence for the existence of the simple cyclohexane ring in multiplanar forms. Mention must be made of the fact that the dipole moment of cyclohexa-1 : 4-dione, determined in benzene solution, has been found to be $1 \cdot 6 \mathrm{~d}$. by Hassel and Naeshagen (Tids. Kjemi Berg., 1930, No. 7) and $1 \cdot 3$ D. by Le Fèvre and Le Fèvre (J., 1935, 1696). According to the calculations of the latter authors, these results indicate that in benzene solution an equilibrium exists between the "cis-" and the " trans-" strainless form, and that the proportion of the "cis-" form is $9-15 \%$. No separation of the two forms was, however, effected. The literature reveals variations in the physical properties of methylcyclohexane prepared by different methods:

Method.*	B. p.	Density.		Refractive index.
1	101°	$d_{40^{20}}{ }^{\circ} 0.7693$	$n_{\text {D }}^{18^{\circ}} 1.4243$	
2	$103^{\circ} / 760 \mathrm{~mm}$.	$d_{4{ }^{18}{ }^{18} 5^{\circ} 0.7662}$	$n^{18.5^{\circ}} 1.41705$	
3	$101^{\circ} / 757 \mathrm{~mm}$.	$d_{0^{\circ}}^{20}{ }^{\circ} 0.7695$	$n^{20^{\circ}}{ }^{\circ} 1.4230$	
4	$100^{\circ} / 770 \mathrm{~mm}$.	$d_{4{ }^{20}}{ }^{\circ} 0.7736$	$n_{\mathrm{a}}^{20^{\circ}} 1.42365, n^{200^{\circ}}$	$1.42590, n_{\beta}^{20^{\circ}} 1 \cdot 41320, n_{\gamma}^{200^{\circ}} 1 \cdot 43651$
5	$99.5-100 \cdot 0^{\circ} / 759 \mathrm{~mm}$.	0.7708	$n_{a}^{20^{\circ}} 1 \cdot 42175, n_{\text {He }}^{20^{\circ}}$	$1 \cdot 42390, n_{\beta}^{20^{\circ}} 1 \cdot 42931, n_{\gamma}^{20^{\circ}} 1 \cdot 43367$
6	$100^{\circ} / 770 \mathrm{~mm}$.	0.7725	$n_{\mathrm{a}}^{20^{\circ}} 1.42265, n_{\text {He }}^{20^{\circ}}$	$1 \cdot 42500, n_{\beta}^{20^{\circ}} 1 \cdot 43040, n_{\gamma}^{200^{\circ}} 1 \cdot 43470$
7	$100^{\circ} / 780 \mathrm{~mm}$.	0.7735	$n_{a}^{20^{\circ}} 1 \cdot 42355, n_{\text {He }}^{200^{\circ}}$	$1 \cdot 42590, n_{\beta}^{20^{\circ}} 1 \cdot 43130, n_{\gamma}^{20^{\circ}} 1 \cdot 43561$
8	101.2°	$d^{15^{\circ}} 0.77340$	$n_{\text {a }}^{15^{\circ}} 1$-42305, $n^{15^{\circ}}$	$1 \cdot 42535, n_{\text {He }}^{15^{\circ}} 1 \cdot 42550, n_{\beta}^{15^{\circ}} 1 \cdot 43072$
		$d^{30^{\circ}} 0.76030$	$n_{\gamma}^{15^{\circ}} 1 \cdot 43510$	

* (1) From iodo-3-methylcyclohexane and HI (Zelinsky, Ber., 1897, 30, 1538). (2) From bromomethylcyclohexane with zinc dust and HOAc (Knoevenagel, Annalen, 1897, 297, 159). (3) From 3 -methylcyclohexanonehydrazone and solid KOH (Kishner, Centr., 1911, ii, 363). (4) From pure toluene with Pt-black and H_{2} in HOAc (Eisenlohr, loc. cit.). (5) From cyclohexanone and MeI, etc. (idem, ibid.). (6) From p-methylcyclohexanonesemicarbazone and NaOEt (idem, ibid.). (7) From o-methylcyclohexanonesemicarbazone and NaOEt (idem, ibid.). (8) Source not stated (Timmermans and Martin, J. Chim. physique, 1926, 23, 761).
It is possible that a partial explanation of the differences is to be found in the preponderance of one or other of the multiplanar forms.

Experimental.

Details of the preparation of the various pure compounds are given below. All operations were conducted in Pyrex vessels, and the final distillations were carried out in all-Pyrex apparatus fitted with interchangeable ground-glass joints. Middle constant-boiling fractions were separately collected for the physical measurements, and kept in Pyrex test-tubes which had been thoroughly cleaned with chromic acid mixture, washed with distilled water, and dried at 120°.

The refractive indices and dispersions at 20.0° and also the surface tensions and densities over a range of temperatures were measured as described in Part II (loc. cit.); for a temperature of $c a .41^{\circ}$ redistilled methylene chloride was used. Three surface-tension apparatus, A, B, and C, were employed, the constants of which, when determined with pure benzene, were 1.8725 , $2 \cdot 3449$, and $2 \cdot 4827$, respectively.

In the tabulated results, t is the temperature, h the observed difference in height (in mm.) in the two arms of the U-tube, H the corrected value, $d_{4^{\circ}}^{\circ}$ the density (calculated from the observed densities by assuming a linear variation with temperature), γ the surface tension (dynes $/ \mathrm{cm}$.) computed from the equation $\gamma=K H d, P$ the parachor, M the molecular weight, and $M n_{\mathrm{D}}^{20 \cdot 0^{\circ}}$ the molecular refraction coefficient. The parachor was calculated in the usual way,
allowance for the density of the vapour being made when the temperature of measurement was within 60° of the b. p. ; the density of the vapour was evaluated by Sugden's method (J., 1925, 127, 1540). The number in parenthesis following the value of $\gamma_{20^{\circ}}$ is the temperature coefficient of the surface tension. All measurements of the refractive indices were carried out at $20 \cdot 0^{\circ} \pm$ 0.05°. The following abbreviations are employed : $d_{4^{\circ}}^{20{ }^{\circ}}$ for $d_{4^{\circ}}^{20 \cdot 0^{\circ}} ; M n_{\mathrm{D}}^{20{ }^{\circ}}$ for $M n_{\mathrm{D}}^{20.0^{\circ}} ; R_{\mathrm{C}}, R_{\mathrm{D}}$, $R_{\mathrm{F}}, R_{\mathrm{G}^{\prime}}$, for $\left[R_{L}\right]_{\mathrm{C}},\left[R_{L}\right]_{\mathrm{D}},\left[R_{L}\right]_{\mathrm{F}}$, and $\left[R_{L}\right]_{\mathrm{G}}$. respectively.

Assistance in the preparations and measurements marked with an asterisk was given by Mr. R. J. Tudor, M.Sc., A.I.C. The new values for the surface tensions, densities, and parachors for some of the various ketones replace those previously published (Vogel, J., 1928, 2029; Vogel and Oommen, J., 1930, 770 ; Vogel, J., 1931, 1801) ; greater care was taken with the purification, and the final distillation was conducted in an all-Pyrex glass apparatus. Godchot (collected results in Bull. Soc. chim., 1934, 1, 1153) determined, inter alia, $d_{13 \cdot 5^{\circ}}^{13 \cdot 5^{\circ},} n_{\mathrm{H}_{\mathrm{g}} \cdot a}^{13 \cdot 5^{\circ}}, n_{\mathrm{D}}^{13 \cdot 5^{\circ}}, \gamma_{13 \cdot 5^{\circ}}$ for a number of unsaturated and saturated alicyclic hydrocarbons, but did not give full details of the purity of the starting materials; his parachor was computed from one determination at $13 \cdot 5^{\circ}$.

* cycloPentanone.-This was prepared from adipic acid, m. p. 151-152 (Vogel, J., 1929, 727), and purified through the semicarbazone, m. p. 206° ($e x$ alcohol), from which the ketone was regenerated in this and the following cases with oxalic acid. $M=84 \cdot 11$; b. p. $129^{\circ} / 756$ $\mathrm{mm} . ; \quad n_{\mathrm{C}} 1 \cdot 43452, n_{\mathrm{D}} 1 \cdot 43680, n_{\mathrm{F}} 1 \cdot 44243, n_{\mathrm{G}}, 1 \cdot 44652 ; R_{\mathrm{C}} 23 \cdot 20, R_{\mathrm{D}} 23 \cdot 31, R_{\mathrm{F}} 23 \cdot 56, R_{\mathrm{G}^{\prime}}$, $23.75 ; R_{G^{\prime}-\mathrm{c}} 0.55, R_{\mathrm{F}-\mathrm{c}} 0.36 ; M n_{\mathrm{D}}^{20^{\circ}} 120.85$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.9450, d_{4^{\circ}}^{64 \cdot 4^{\circ}} 0.9075$, $d_{4}^{87 \cdot 4^{\circ}} 0 \cdot 8857$.

$$
\gamma_{20^{\circ}}=33.31(0 \cdot 11) . \quad \text { Apparatus } A
$$

t.	h.	H.	$d_{4^{\circ}}^{t^{\circ}}$	γ.	P.	t.	h.	H.	$d_{4^{\circ}}^{t^{\circ}}$	γ.	P.
$23 \cdot \cdot^{\circ}$	$18 \cdot 93$	$18 \cdot 69$	$0 \cdot 9423$	$32 \cdot 98$	213.9	$86 \cdot 5^{\circ}$	$15 \cdot 91$	$15 \cdot 67$	0.8865	$26 \cdot 01$	$214 \cdot 2$
$64 \cdot 1$	$17 \cdot 05$	$16 \cdot 81$	$0 \cdot 9078$	28.57	$214 \cdot 2$					Mean $214 \cdot 1$	

(Wallach, Annalen, 1907, 353, 331, gives b. p. 129°, $d^{20^{\circ}} 0.948, n_{\mathrm{D}}^{20^{\circ}} 1.4366 ;$ v. Auwers, Hinterseber, and Treppmann, ibid., 1915, 410, 281, give b. p. $130 \cdot 0-130 \cdot 4^{\circ}, d_{4^{\circ}}^{17 \cdot 8^{\circ}} 0.9513, n_{a}^{17 \cdot 8^{\circ}}$ 1.43535 , $n_{\mathrm{D}}^{17 \cdot 8^{\circ}} 1.43757, n_{\beta}^{17 \cdot 8^{\circ}} 1.44340, n^{17 \cdot 8^{\circ}} 1 \cdot 44820$; Vogel, J., 1928, 2030, gives b. p. $129 \cdot 5^{\circ} /$ 761.5 mm ., $d_{4^{\circ}}^{16 \cdot 0^{\circ}} 0.9524, n_{\mathrm{D}}^{16 \cdot 0^{\circ}} 1 \cdot 4383, P 214 \cdot 2$.)

* 3-Methylcyclopentanone.-The ketone, b. p. 143-144 ${ }^{\circ}$, from pure β-methyladipic acid (cf. Part II, loc. cit.) was purified through the semicarbazone, m. p. 185-186 ${ }^{\circ}$ (ex alcohol); b. p. $144^{\circ} / 770 \mathrm{~mm} . ; ~ M=98.14 ; n_{\mathrm{C}} 1.43153$, $n_{\mathrm{D}} 1.43360, n_{\mathrm{F}} 1.43941, n_{\mathrm{G}}, 1.44353 ; R_{\mathrm{C}} 27.86$, $R_{\mathrm{D}} 27.97, R_{\mathrm{F}} 28.30, R_{\mathrm{G}^{\circ}} 28.53 ; R_{\mathrm{G}^{\prime}-\mathrm{C}} 0.67, R_{\mathrm{F}-\mathrm{C}} 0.44 ; M n_{\mathrm{D}}^{200^{\circ}} 140.69$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 0.9129, d_{4^{\circ}}^{62 \cdot 5^{\circ}} 0 \cdot 8751, d_{4^{\circ}}^{87 \cdot 5^{\circ}} 0 \cdot 8524$.

t.	$\gamma_{20^{\circ}}=29.72(0 \cdot 10) . \quad$ Apparatus A.										
	h.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.	t.	h.	H.	$d_{4}^{t^{\text {co }}}$.	γ.	P.
21.3°	$17 \cdot 57$	17.33	0.9117	$29 \cdot 59$	$251 \cdot 1$	$87 \cdot 0^{\circ}$	14.77	14.53	$0 \cdot 8529$	$23 \cdot 21$	$251 \cdot 4$
$62 \cdot 2$	$15 \cdot 89$	$15 \cdot 65$	0.8754	$25 \cdot 65$	$252 \cdot 3$					Mean	$251 \cdot 6$

(Wallach, Annalen, 1912, 394, 371, gives b. p. $144-144 \cdot 5^{\circ}$, $d^{22^{\circ}} 0.913, n_{\mathrm{D}} 1.4329$; Vogel, J., 1931, 1800 , gives b. p. $143 \cdot 5-144^{\circ} / 759 \mathrm{~mm} ., d_{4^{\circ}}^{17 \cdot 5^{\circ}} 0.9155, P 252 \cdot 7$.)

* cycloHexanone.-The purest commercial ketone was purified through the semicarbazone, m. p. 165° (ex methyl alcohol) ; b. p. $155^{\circ} / 763.5 \mathrm{~mm}$.; $M=98.14 ; n_{\mathrm{C}} 1.44737, n_{\mathrm{D}} 1.44977$, $n_{\mathrm{F}} 1.45563, n_{\mathrm{G}^{\prime}} 1.45995 ; R_{\mathrm{C}} 27.75, R_{\mathrm{D}} 27.87, R_{\mathrm{F}} 28.19, R_{\mathrm{G}}, 28.42 ; R_{\mathrm{G}^{\prime}-\mathrm{c}} 0.67, R_{\mathrm{F}-\mathrm{c}} 0.44$; $M n_{\mathrm{D}}^{20^{\circ}} 142 \cdot 28$. Densities determined : $d_{4^{\circ}}^{20} 0.9455, d_{4^{6}}^{64 \cdot 6^{\circ}} 0.9077, d_{4^{\circ}}^{87} 6^{\circ} 0.8876$.

t.	$\gamma_{20^{\circ}}=35 \cdot 32(0 \cdot 13) . \quad$ Apparatus A.										
	h.	H.	$d_{44^{\circ}}{ }^{\text {a }}$.	γ.	P.	t.	h.	H.	$d^{t^{t^{\circ}}}$.	γ.	P.
$20.7{ }^{\circ}$	$20 \cdot 15$	19.91	$0 \cdot 9449$	35-23	25.30	$86.9{ }^{\circ}$	16.54	16.30	$0 \cdot 8882$	$27 \cdot 10$	$252 \cdot 1$
$62 \cdot 8$	17-58	17.34	$0 \cdot 9091$	29.52	$251 \cdot 5$					Mean	$252 \cdot 2$

(Wallach, A nnalen, 1907, 353, 331, gives b. p. $155^{\circ}, d^{21^{\circ}} 0.947, n_{\mathrm{D}}^{20 \circ} 1.4503$: v. Auwers, Hinterseber, and Treppmann, loc. cit., give b. p. $156 \cdot 6-156 \cdot 8^{\circ}, d_{4^{\circ}}^{15 \cdot 3^{\circ}} 0.9503, n_{\mathrm{a}}^{15 \cdot 3^{\circ}} 1 \cdot 45024, n_{\mathrm{D}}^{15 \cdot 3^{\circ}} 1 \cdot 45261$, $n_{\beta}^{15 \cdot 3^{\circ}} 1.45859, n_{\gamma}^{15 \cdot 3^{\circ}} 1.46370$; Vogel, loc. cit., gives b. p. $47^{\circ} / 15 \mathrm{~mm}$., $d_{4^{\circ}}^{16 \cdot 9^{\circ}} 0.9488, n_{\mathrm{D}}^{16.9^{\circ}} 1 \cdot 4521$, $P 251 \cdot 4$.)
*2-Methylcyclohexanone.-The 2-, 3-, and 4-methylcyclohexanones were prepared for this research by Messrs. Howards from the chemically pure cresols. The 2-methyl ketone had b. p. $164^{\circ} / 770 \mathrm{~mm}$. and was purified through the semicarbazone, m. p. 196° (ex rectified spirit). B. p. $165^{\circ} / 764 \mathrm{~mm} . ; ~ M=112 \cdot 17 ; n_{\mathrm{C}} 1.44527, n_{\mathrm{D}} 1.44766, n_{\mathrm{F}} 1.45340, n_{\mathrm{G}}, 1.45759 ; R_{\mathrm{C}} 32 \cdot 37$, $R_{\mathrm{D}} 32 \cdot 51, R_{\mathrm{F}} 32 \cdot 87, R_{\mathrm{G}^{\prime}}, 33 \cdot 13 ; R_{\mathrm{G}^{\prime}-\mathrm{C}} 0 \cdot 76, R_{\mathrm{F}-\mathrm{c}} 0 \cdot 50 ; M n_{\mathrm{D}}^{20^{\circ}} 162 \cdot 13$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 0.9231, d_{4^{6} \cdot 5^{\circ}}^{60} 0.8896, d_{4^{3}}^{8 \cdot 7^{\circ}} 0.8715$.

$\gamma_{20^{\circ}}=32.05(0 \cdot 10) . \quad$ Apparatus B.											
t.	h.	H.	$d_{4}{ }^{\circ}$.	γ.	P.	t.	h.	H.	$d^{\text {cos. }}$	γ.	P.
$22.1{ }^{\circ}$	14.97	14.73	0.9214	31.83	$289 \cdot 1$	$86.9{ }^{\circ}$	12.58	$12 \cdot 34$	$0 \cdot 8689$	$25 \cdot 14$	$289 \cdot 1$
$61 \cdot 6$	13.51	$13 \cdot 27$	$0 \cdot 8903$	27.70	$289 \cdot 1$					Mea	$289 \cdot 1$

(Wallach, A nnalen, 1906, 346, 251, gives b. p. 165 ${ }^{\circ}$, $d_{4^{21} \cdot 5^{\circ}} 0 \cdot 923, n_{\mathrm{D}}^{21 \cdot 5^{\circ}} 1 \cdot 4461$; Sabatier and Mailhe, Ann. Chim., 1907, 10, 527, give b. p. 162-163 ${ }^{\circ}$, $d_{4^{\circ}}^{13^{\circ}} 0.935, n_{\mathrm{D}}^{13^{\circ}} 1.454$; v. Auwers, Hinterseber, and Treppmann, loc. cit., give b. p. $167^{\circ} / 740 \mathrm{~mm}$., $d_{4^{14 \cdot 6}}{ }^{\circ} 0 \cdot 9300, n_{a}^{14 \cdot 6^{\circ}} 1 \cdot 44827, n_{\mathrm{D}}^{14 \cdot 6^{\circ}}$ $1 \cdot 45049, n_{\beta}^{14 \cdot 6^{\circ}} 1 \cdot 45653, n_{\gamma}^{14 \cdot 6^{\circ}} 1 \cdot 41635$; v. Auwers and Lange, Annalen, 1915, 410, 319, give b. p. $164-165^{\circ}, d_{4}^{20^{\circ}} 0.924, n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 4493$; Eisenlohr, loc. cit., gives b. p. $165^{\circ} / 757 \mathrm{~mm}$., $d_{4^{200}} 0.9240, n_{a}^{20^{\circ}}$ $1 \cdot 44481, n_{\mathrm{He}}^{20^{\circ}} 1 \cdot 44747, n_{\beta}^{20^{\circ}} 1 \cdot 45332, n_{\gamma}^{20^{\circ}} 1 \cdot 45845$; Vogel and Oommen, J., 1930, 774, give b. p. $165^{\circ} / 757 \mathrm{~mm}$., $d_{4^{9}}^{9 \cdot 4^{\circ}} 0.9255, n_{\mathrm{D}}^{19 \cdot 4^{\circ}} 1 \cdot 4484, P 288 \cdot 2$.)

* 3-Methylcyclohexanone.-Howards' product, b. p. $168-169^{\circ} / 770 \mathrm{~mm}$., was purified through the semicarbazone, m. p. 191° (ex methyl alcohol). B. p. $169^{\circ} / 762 \mathrm{~mm} . ; \quad M=112 \cdot 17 ; n_{\mathrm{c}}$ $1 \cdot 44301, n_{\mathrm{D}} 1 \cdot 44566, n_{\mathrm{F}} 1 \cdot 45127, n_{\mathrm{G}^{\prime}} 1 \cdot 45565 ; R_{\mathrm{C}} 32 \cdot 48, R_{\mathrm{D}} 32 \cdot 65, R_{\mathrm{F}} 33.01, R_{\mathbf{G}^{\prime}} 33.29 ; R_{\mathrm{G}^{\prime}-\mathrm{c}}$ $0.81, R_{\mathrm{F}-\mathrm{c}} 0.53 ; M n_{\mathrm{D}}^{20^{\circ}} 162 \cdot 16$. Densities determined : $d_{4^{\circ}}^{20{ }^{\circ}} 0.9155, d_{4^{62 \cdot 20}} 0.8815, d_{4^{8.90}} 0.8641$.
$\gamma_{20^{\circ}}=31.33(0 \cdot 10) . \quad$ Apparatus B.

t.	h.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.	t.	h.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.
21.3°	14.79	14.55	0.9145	$31 \cdot 20$	289.9	85.8°	$12 \cdot 46$	$12 \cdot 22$	$0 \cdot 8650$	25-27	$290 \cdot 8$
$60 \cdot 8$	$13 \cdot 37$	$13 \cdot 13$	$0 \cdot 8826$	$27 \cdot 17$	$290 \cdot 2$					Mean	$290 \cdot 3$

(Wallach, Annalen, 1896, 289, 339, gives b. p. 169 ${ }^{\circ}$, $d^{21^{\circ}} 0.915, n_{\mathrm{D}}^{21^{\circ}} 1.4456$; Knoevenagel, ibid., 1897, 297, 155, gives b. p. 169-170 $, d_{4^{9}}^{19 \cdot 3^{\circ}} 0.9213, n_{\mathrm{d}}^{1 \cdot 3^{\circ}} 1 \cdot 44174$; Sabatier and Mailhe, loc. cit., give b. p. $169^{\circ} / 765 \mathrm{~mm}$., $d_{4^{4}}{ }^{10^{\circ}} 0.930, n_{\mathrm{D}}^{14^{4}} 1 \cdot 454$; v. Auwers, Hinterseber, and Treppmann, loc. cit., give b. p. $60-60 \cdot 2^{\circ} / 15 \mathrm{~mm}$., $d_{4^{25 \cdot 155^{\circ}}} 0 \cdot 9139, n_{a}^{25 \cdot 15^{\circ}} 1 \cdot 44092, n_{\mathrm{D}}^{25 \cdot 15^{\circ}} 1 \cdot 44313, n_{\beta}^{25 \cdot 15^{\circ}} 1 \cdot 44914$, $n_{\gamma}^{25 \cdot 15^{\circ}} 1 \cdot 45394$; Eisenlohr, loc. cit., gives b. p. $170 \cdot 5^{\circ} / 755 \mathrm{~mm}$., $d_{40^{20}}^{20^{\circ}} 0.9182, n_{a}^{20^{\circ}} 1 \cdot 44270, n_{\mathrm{Ho}}^{20^{\circ}}$ 1-44526, $n_{\beta}^{200^{\circ}}$ 1-45122, $n_{\gamma}^{20^{\circ}}$ 1-45598; Vogel and Oommen, loc. cit., give b. p. $169^{\circ} / 747.5 \mathrm{~mm}$., $d_{4^{\circ}}^{18 \cdot 7^{\circ}} 0.9151, n_{\mathrm{D}}^{187^{\circ}} 1 \cdot 4463, P 290 \cdot 0$.)

* 4-Methylcyclohexanone.-Howards' product, b. p. $170-171^{\circ} / 770 \mathrm{~mm}$., was purified through the semicarbazone, m. p. 197° (ex methyl alcohol-ethyl alcohol, $1: 1$). B. p. $170^{\circ} / 761 \mathrm{~mm}$.; $M=112 \cdot 17, n_{\mathrm{o}} 1 \cdot 44290, n_{\mathrm{D}} 1 \cdot 44506, n_{\mathrm{F}} 1 \cdot 45081, n_{\mathrm{G}} \cdot 1 \cdot 45509 ; R_{\mathrm{O}} 32 \cdot 51, R_{\mathrm{D}} 32 \cdot 65, R_{\mathrm{F}} 33 \cdot 01$, $R_{\mathrm{G}^{\prime}} 33.29 ; R_{\mathrm{G}^{\prime}-\mathrm{c}} 0.78, R_{\mathrm{F}-\mathrm{c}} 0.50 ; M n_{\mathrm{D}}^{20^{\circ}} 162 \cdot 10$. Densities determined : $d_{4^{2}}^{20^{\circ}} 0.9145, d_{4^{\circ}}^{60 \cdot 9^{\circ}}$ $0.8832, d_{4}^{85 \cdot 9} 0.8269$.

$\gamma_{20^{\circ}}=30.94(0.09) . \quad$ Apparatus B.											
t.	h.	H.	$d_{4}^{\text {to }}$.	γ.	P.	t.	h.	H.	$d_{4^{\text {c }}}{ }^{\text {c }}$	γ.	P.
$23.2{ }^{\circ}$	14.57	$14 \cdot 33$	0.9120	$30 \cdot 65$	$289 \cdot 4$	$86.1{ }^{\circ}$	$12 \cdot 48$	$12 \cdot 24$	0.8627	24.76	290.0
60.5	$13 \cdot 37$	$13 \cdot 13$	$0 \cdot 8835$	$27 \cdot 20$	$289 \cdot 9$					Mean	$289 \cdot 8$

(Wallach, Annalen, 1905, 346, 251, gives b. p. 169-171 ${ }^{\circ}$, $\tilde{a}_{4^{20}}{ }^{\circ} 0.914, n_{\mathrm{D}}^{200^{\circ}} 1.4435$; Sabatier and Mailhe, loc. cit., give b. p. $169.5^{\circ} / 760 \mathrm{~mm}$., $d_{4^{\circ}}^{130^{\circ}} 0.9235, n_{\mathrm{D}}^{13^{\circ}} 1.452$; Haller, Compt. rend., 1913, 157, 743, gives b. p. $170^{\circ} / 760 \mathrm{~mm}$., $d_{4^{\circ}}^{20^{\circ}} 0.9132, n_{0}^{20} 1 \cdot 4458$; v. Auwers, Hinterseber, and Treppmann, loc. cit., give b. p. $55 \cdot 8-56 \cdot 4^{\circ} / 10 \cdot 5 \mathrm{~mm} ., d_{4}^{24 \cdot 4^{\circ}} 0.9119, n_{a}^{24 \cdot 4^{\circ}} 1 \cdot 44092, n_{\mathrm{D}}^{244^{\circ}} 1 \cdot 44322$, $n_{\beta}^{24 \cdot 4^{\circ}} 1 \cdot 44918, n_{\gamma}^{24 \cdot 4^{\circ}} 1 \cdot 45413$; v. Auwers and Kolligs, Ber., 1922, 55, 45, give b. p. $169 \cdot 2^{\circ}, d_{4^{\circ}}^{199^{\circ}}$ $0 \cdot 91685, n_{a}^{19 \cdot 9^{\circ}} \quad 1 \cdot 44285, n_{\mathrm{D}}^{19 \cdot 9^{\circ}} \quad 1 \cdot 44509, n_{\beta}^{1 \cdot 9^{\circ}} 1 \cdot 45110, n^{19 \cdot 9^{\circ}} 1 \cdot 45595$; Eisenlohr, loc. cit., gives, inter alia, b. p. 171-5 $/ 750 \mathrm{~mm}$., $d_{40^{20}}^{20} 0 \cdot 9128, n_{a}^{20^{\circ}} 1 \cdot 44099, n_{\mathrm{Ho}}^{20^{\circ}} 1 \cdot 44346, n_{\rho}^{20^{\circ}} 1 \cdot 44924, n_{\gamma}^{20^{\circ}} 1 \cdot 45401$; Vogel and Oommen, loc. cit., give b. p. $171^{\circ} / 747 \mathrm{~mm} ., d_{4^{19}}{ }^{9 \cdot 3^{\circ}} 0.9159, n_{\mathrm{D}}^{19 \cdot 3^{\circ}} 1 \cdot 4455, P 289 \cdot 6$.)
cycloHeptanone.-Suberic acid, m. p. 140-141 ${ }^{\circ}$, is slowly distilled with iron filings and a little baryta (Vogel, J., 1928, 2034); there is a vigorous evolution of hydrogen during the first three hours, due to the formation of the iron salt; it is advisable to attach a long glass tube to the side arm of the cooled filter-flask acting as receiver and to pass it directly into the exhaust pipe of the fume chamber. The distillate was added to excess of saturated sodium bisulphite solution, shaken vigorously, the separated solid collected after 12 hours, and washed with alcohol and ether. The ketone was regenerated from the bisulphite compound with sodium hydroxide solution, well washed with water, dried (anhydrous sodium sulphate), and distilled. B. p. $180^{\circ} / 760 \mathrm{~mm} . ; ~ M=112 \cdot 17 ; n_{\mathrm{C}} 1 \cdot 45725, n_{\mathrm{D}} 1 \cdot 45976, n_{\mathrm{F}} 1 \cdot 46575, n_{\mathrm{G}} \cdot 1 \cdot 47306 ; R_{\mathrm{C}} 32 \cdot 21$, $R_{\mathrm{D}} 32.36, R_{\mathrm{F}} 32.52, R_{\mathrm{Q}^{\prime}} 33.00 ; R_{\mathrm{G}^{\prime}-\mathrm{c}} 0.79, R_{\mathrm{F}-\mathrm{c}} 0.31, M n_{\mathrm{D}}^{20^{\circ}} 163.75$. Densities determined (J., 1928, 2030) : $d_{4^{20}}^{20} 0.9491, d_{4^{6}}^{61 \cdot 7^{\circ}} 0.9160, d_{4^{8}}^{86 \cdot 8^{\circ}} 0 \cdot 8954$.

t.	$\gamma_{20^{\circ}}=34.70$ (0.11). Apparatus B.										
	h.	H.	$d_{4}^{t_{4}^{\text {a }}}$.	γ.	P.	t.	h.	H.	$d_{\mathrm{i}}{ }^{\text {dio }}$.	γ.	P.
$15.5{ }^{\circ}$	15.99	15.75	0.9527	$35 \cdot 19$	286.7	$86.0{ }^{\circ}$	$13 \cdot 48$	$13 \cdot 24$	$0 \cdot 8960$	27.82	287.5
$61 \cdot 2$	14.28	14.04	0.9164	$30 \cdot 17$	286.9					Mean	$287 \cdot 0$

(Wallach, Annalen, 1907, 353, 331, gives b. p. 180°, $d^{21^{\circ}} 0.9500, n_{\mathrm{D}}^{21^{\circ}} 1.4604$; v. Auwers, Hinterseber, and Treppmann, loc. cit., give $d_{4^{\circ}}^{21 \cdot 9^{\circ}} 0.9495, n_{a}^{21 \cdot 9^{\circ}} 1 \cdot 45801, n_{\mathrm{D}}^{21 \cdot 9^{\circ}} 1.46027, n_{\beta}^{20 \cdot 9^{\circ}}$ $1.46646, n_{\gamma}^{21 \cdot 9^{\circ}} 1.47149$; Vogel, loc. cit., gives b. p. $181^{\circ} / 769 \mathrm{~mm} ., d_{4^{4}}^{15 \cdot 0^{\circ}} 0.9526, n_{\mathrm{D}}^{15 \cdot 0^{\circ}} 1 \cdot 4635, P$ $288 \cdot 0$.)

* trans- β-Decalone.-The ketone, b. p. $117^{\circ} / 16 \mathrm{~mm}$. , from pure trans- β-decalol (cf. Part II, loc. cit.) was purified through the semicarbazone, m. p. $192-193^{\circ}$ (ex alcohol). B. p. $117^{\circ} / 16$ $\mathrm{mm} . ; M=152 \cdot 23 ; n_{\mathrm{C}} 1 \cdot 48015, n_{\mathrm{D}} 1 \cdot 48282, n_{\mathrm{F}} 1 \cdot 48922, n_{\mathrm{G}} 1.49384 ; R_{\mathrm{C}} 44 \cdot 18, R_{\mathrm{D}} 44 \cdot 38$; $R_{\mathrm{F}} 44 \cdot 88, R_{\mathrm{G}} \cdot 45 \cdot 24 ; R_{\mathrm{G}-\mathrm{c}} 1 \cdot 06, R_{\mathrm{F}-\mathrm{c}} 0.64 ; M n_{\mathrm{D}}^{20^{\circ}} 225 \cdot 73$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.9792$, $d_{4}^{60 \cdot 7^{\circ}} 0.9485, d_{4^{85}}^{85} 0.9312$.

$\gamma_{20^{\circ}}=36 \cdot 16(0 \cdot 10) . \quad$ Apparatus A.											
t.	h.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.	t.	h.	H.	$d_{4}^{\text {to }}$.	γ.	P.
$18.5{ }^{\circ}$	20.02	19.78	$0 \cdot 9804$	36.31	381.2	$86.4{ }^{\circ}$	$17 \cdot 43$	17-19	0.9306	$29 \cdot 95$	382.7
61.2	$18 \cdot 36$	18.12	0.9481	32-17	382.4					Mean	$382 \cdot 1$

(Hückel, A nnalen, 1925, 441, 20, gives b. p. $126^{\circ} / 30 \mathrm{~mm}$., $d_{4^{\circ}}^{15 \cdot 7^{\circ}} 0.9797, n_{\mathrm{D}}^{19^{\circ}} 1 \cdot 48088$; Rao, J., 1929, 1961, b. p. $117^{\circ} / 16 \mathrm{~mm}$., $d_{4^{2 \cdot}}^{22 \cdot 2^{\circ}} 0.97624, n_{\mathrm{D}}^{22 \cdot 2^{\circ}} 1 \cdot 48337$; Vogel, loc. cit., b. p. $106^{\circ} / 12 \mathrm{~mm}$., $d_{4^{4}}^{17 \cdot 7^{\circ}} 0.9800, n_{\mathrm{D}}^{17 \cdot 7^{\circ}} 1 \cdot 4843, P 382 \cdot 4$.)
trans-Hexahydro- β-hydrindone.-The ketone, b. p. $91-92^{\circ} / 13 \mathrm{~mm}$., from trans-cyclohexane1: 2-diacetic acid, m. p. 167° (cf. Part II, loc. cit.), was purified through the semicarbazone, m. p. 242° ($e x$ alcohol). B. p. $92^{\circ} / 13 \mathrm{~mm}$.; $M=138.20, n_{\mathrm{C}} 1.47429, n_{\mathrm{D}} 1.47686, n_{\mathrm{F}} 1.48316, n_{\mathrm{G}^{\prime}}$ $1 \cdot 48782 ; R_{\mathrm{C}} 39 \cdot 70, R_{\mathrm{D}} 39 \cdot 88, R_{\mathrm{F}} 40 \cdot 33, R_{\mathrm{G}^{\prime}} 40 \cdot 66 ; R_{\mathrm{G}^{\prime}-\mathrm{c}} 0 \cdot 96, R_{\mathrm{F}-\mathrm{c}} 0 \cdot 63 ; M n_{\mathrm{D}}^{20^{\circ}} 204 \cdot 11$. Densities determined : $d_{4^{\circ}}^{20} 0.9791, d_{4^{\circ}}^{63 \cdot 6^{\circ}} 0.9463, d_{4^{6}}^{8 \cdot 0^{\circ}} 0.9298$.
$\gamma_{20^{\circ}}=35 \cdot 13(0 \cdot 10) . \quad$ Apparatus A.

t.	h.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.	t.	h.	H.	$d_{44^{\circ}}^{t^{\circ}}$.	γ.	P.
$24.9{ }^{\circ}$	19.23	18.99	0.9742	$34 \cdot 64$	$344 \cdot 2$	$86.9{ }^{\circ}$	16.84	$16 \cdot 60$	0.9291	$28 \cdot 88$	$344 \cdot 9$
$64 \cdot 2$	$17 \cdot 64$	17.40	$0 \cdot 9458$	$30 \cdot 81$	344-3					Mea	$344 \cdot 5$

(Hückel and Friedrich, Annalen, 1926, 451, 132, give b. p. $98^{\circ} / 19 \mathrm{~mm} ., d_{4^{\circ}}^{17 \cdot 0^{\circ}} 0.9807, n_{\mathrm{D}}^{17 \cdot 0^{\circ}}$ 1.47687 ; Kandiah, J., 1931, 922, gives b. p. $90^{\circ} / 11 \mathrm{~mm}$.; $d_{4^{\circ}}^{16^{\circ}} 0.9815, n_{\mathrm{D}}^{16^{\circ}} 1 \cdot 47692$.)

Methylenecyclopentane.-This was prepared by the catalytic decomposition of pure cyclo-pentane-1 : 1-diacetic acid (Vogel, J., 1933, 1030), and fractionated over sodium. B. p. 75-76/ $760 \mathrm{~mm} . ; \quad M=82 \cdot 14 ; n_{\mathrm{C}} 1 \cdot 42808$, $n_{\mathrm{D}} 1 \cdot 43078$, $n_{\mathrm{F}} 1.43743, n_{\mathrm{G}^{\prime}} 1.44257 ; R_{\mathrm{C}} 27 \cdot 15, R_{\mathrm{D}} 27 \cdot 29$, $R_{\mathrm{F}} 27.66, R_{\mathrm{G}}, 27.94 ; R_{\mathrm{G}^{\prime}-\mathrm{C}} 0.79, R_{\mathrm{F}-\mathrm{c}} 0.51 ; M n_{\mathrm{D}}^{20^{\circ}} 117.80$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.7787$, $d_{4^{\circ}}^{4 \cdot 8^{\circ}} 0 \cdot 7518$.

$$
\begin{aligned}
& \gamma_{20^{\circ}}=24.36(0 \cdot 11) . \quad \text { Apparatus } C .
\end{aligned}
$$

(Wallach, A nnalen, 1906, 347, 325, gives b. p. 78— 81°, $d^{19^{\circ}} 0.78, n_{\mathrm{D}}^{19{ }^{\circ}} 1 \cdot 4355$.)
Methylenecyclohexane.-This was prepared by the thermal decomposition of pure cyclo-hexane-1 : 1-diacetic acid (Vogel, J., 1933, 1030), and repeatedly fractionated over sodium. B. p. $102-103^{\circ} / 764 \mathrm{~mm} . ; ~ M=96.17 ; n_{\mathrm{c}} 1.44916, n_{\mathrm{D}} 1.45227, n_{\mathrm{F}} 1.45973, n_{\mathrm{G}}, 1.46567$; $R_{\mathrm{C}} 31 \cdot 96, R_{\mathrm{D}} 32 \cdot 15, R_{\mathrm{G}^{\prime}}, 32 \cdot 97 ; R_{\mathrm{G}^{\prime}-\mathrm{C}} 1 \cdot 01, R_{\mathrm{F}-\mathrm{C}} 0.64 ; M n_{\mathrm{D}}^{20^{\circ}} 139.67$. Densities determined : $d_{4}^{20} 0 \cdot 8074, d_{4^{\circ}}{ }^{\circ} \cdot 5^{\circ} 0 \cdot 7867, d_{4 \cdot}^{6 \cdot 0^{\circ}} 0 \cdot 7704$.

t.	$\gamma_{20^{\circ}}=25 \cdot 68(0 \cdot 11) . \quad$ Apparatus A.										
	h.	H.	$d_{4}^{\text {co }}$.	γ.	P.	t.	h.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.
17.5°	$17 \cdot 36$	$17 \cdot 12$	$0 \cdot 8097$	$25 \cdot 96$	$268 \cdot 1$	61.5°	14.94	14.70	0.7699	$21 \cdot 19$	$268 \cdot 3$
$40 \cdot 9$	$16 \cdot 16$	$15 \cdot 92$	0.7872	$23 \cdot 47$	$269 \cdot 1$					Mean	$268 \cdot 5$

(Wallach, Annalen, 1906, 347, 329, gives b. p. $105-106^{\circ}, d^{20^{\circ}} 0.8025, n_{\mathrm{D}}^{20} 1.4501$; v. Auwers and Ellinger, ibid., 1912, 387, 200, give b. p. $104^{\circ} / 749 \mathrm{~mm}$., $d_{4^{\circ}}^{20^{\circ}} 0.7992, n_{\mathrm{D}}^{20^{\circ}} 1.4502$; v. Auwers, Hinterseber, and Treppmann, loc. cit., give, inter alia, b. p. $102.5^{\circ} / 756 \mathrm{~mm}$., $d_{4^{\circ}}^{17 \cdot 8^{\circ}} 0.8034, n_{a}^{17.8^{\circ}}$ $1 \cdot 44803$, $n_{\mathrm{D}}^{17 \cdot 8^{\circ}} 1 \cdot 45092$, $n_{\beta}^{17 \cdot 8^{\circ}} 1 \cdot 45820, n^{17 \cdot 8^{\circ}} 1 \cdot 46430$; Rosanow, Centr., 1924, i, 2425, gives b. p. $103-104^{\circ}, d_{40^{\circ}}^{20^{\circ}} 0.8032, n_{\mathrm{D}}^{20^{\circ}} 1.4528$; Alexandrovitch, Centr., 1933, ii, 2261, for compound from cyclohexylcarbinol through the xanthate, gives b. p. $101-102^{\circ} / 760 \mathrm{~mm} ., d_{4 \circ^{\circ}}^{20} 0.8034, n^{20^{\circ}}$ 1-4490.)

* 1-Methyl-3-methylenecyclohexane.-This was prepared by the thermal decomposition of pure 3-methylcyclohexane-1 : 1-diacetic acid, m. p. 140-141 ${ }^{\circ}$ (unpublished observation), and had b. p. $123-124^{\circ} / 762 \mathrm{~mm}$. after two distillations over sodium. $M=110 \cdot 19 ; n_{\mathrm{c}} 1 \cdot 44337$,
$n_{\mathrm{D}} 1 \cdot 44626, n_{\mathrm{F}} 1 \cdot 45336, n_{\mathrm{G}^{\prime}} 1 \cdot 45887 ; R_{\mathrm{C}} 36 \cdot 98, R_{\mathrm{D}} 37 \cdot 19, R_{\mathrm{F}} 37 \cdot 70, R_{\mathrm{G}^{\prime}} 38 \cdot 10 ; R_{\mathrm{G}^{\prime}-\mathrm{c}} 1 \cdot 12$, $R_{\mathrm{F}-\mathrm{C}} 0.72 ; M n_{\mathrm{D}}^{20{ }^{\circ}} 160 \cdot 67$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.7970, d_{4^{\circ}}^{4 \cdot 1^{\circ}} 0.7778, d_{4^{\circ}}^{61 \cdot 9^{\circ}} 0.7610$.

$\gamma_{20^{\circ}}=24.72(0 \cdot 10) . \quad$ Apparatus B.											
t.	h.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.	t.	h.	H.	$d^{t^{\circ}}{ }^{\circ}$.	γ.	P.
$16.3{ }^{\circ}$	$13 \cdot 61$	$13 \cdot 37$	$0 \cdot 8003$	$25 \cdot 09$	$310 \cdot 7$	$61.5{ }^{\circ}$	$11 \cdot 80$	11.56	0.7614	$20 \cdot 64$	311.2
$42 \cdot 1$	$12 \cdot 60$	$12 \cdot 36$	0.7778	$22 \cdot 54$	311.2					Mean	311.0

(Wallach, Annalen, 1906, 347, 342, gives b. p. 123-124 ${ }^{\circ}, d_{4^{\circ}}^{20^{\circ}} 0.794, n_{\mathrm{D}}^{20^{\circ}} 1.4461$.)

* 1-Methyl-4-methylenecyclohexane.-This was prepared by the decomposition of 4-methyl-cyclohexane-1 : 1-diacetic acid, m. p. 158°, in the presence of iron filings and a little baryta (unpublished observation), and after two distillations over sodium had b. p. $124-125^{\circ} / 772 \mathrm{~mm}$. $M=110.19 ; n_{\mathrm{C}} 1.44339, n_{\mathrm{D}} 1.44626, n_{\mathrm{F}} 1.45338, n_{\mathrm{G}^{\prime}} 1.45890 ; R_{\mathrm{C}} 36.94, R_{\mathrm{D}} 37.07, R_{\mathrm{F}} 37.58$, $R_{\mathrm{G}}, 37.97 ; R_{\mathrm{G}-\mathrm{C}} 1 \cdot 03, R_{\mathrm{F}-\mathrm{C}} 0.64 ; M n_{\mathrm{D}}^{20^{\circ}} 160 \cdot 67$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 7996, d_{4^{\circ}}^{6 \cdot 9^{\circ}}$ $0 \cdot 7634, d_{4^{\circ}}^{86 \cdot 7^{\circ}} 0 \cdot 7412$.

$\gamma_{20^{\circ}}=24.72(0 \cdot 10) . \quad$ Apparatus B.											
t.	h.	H.	$d_{4}^{t^{\prime}{ }^{\circ}}$.	γ.	P.	t.	h.	H.	$d_{4^{\text {c }}}{ }^{\text {c }}$.	γ.	P.
$15.9{ }^{\circ}$	13.58	$13 \cdot 34$	0.8033	$25 \cdot 13$	$309 \cdot 6$	87.3 ${ }^{\circ}$	$10 \cdot 66$	$10 \cdot 42$	$0 \cdot 7407$	$18 \cdot 10$	$310 \cdot 1$
$60 \cdot 9$	11.79	11.55	0.7634	$20 \cdot 68$	$310 \cdot 5$					Mean	$310 \cdot 1$

(Perkin and Pope, J., 1911, 99, 1514, give b. p. $122^{\circ}, d_{19^{\circ}}^{19{ }^{\circ}} 0 \cdot 7923, n_{D}^{18^{\circ}} 1.4465$; Alexandrovitch, loc. cit., for compound from 4-methylcyclohexylcarbinol through the xanthate, gives b. p. $120-121^{\circ} / 750 \mathrm{~mm}$., $d_{4^{\circ}}^{20^{\circ}} 0.7945, n^{20^{\circ}} 1.4483$.)

* 2-Methylene-trans-decalin.-This was prepared by the thermal decomposition of pure trans-decahydronaphthalene-2 : 2-diacetic acid (Tudor and Vogel, J., 1934, 1252) and fractionated over sodium. B. p. $82-82.5^{\circ} / 10 \mathrm{~mm}$; $M=150.25 ; n_{\mathrm{C}} 1.48398, n_{\mathrm{D}} 1.48695, n_{\mathrm{F}}$ $1.49448, n_{G^{\prime}} 1.50047 ; R_{\mathrm{C}} 48.31, R_{\mathrm{D}} 48 \cdot 57, R_{\mathrm{F}} 49 \cdot 20, R_{\mathrm{G}^{\prime}} 49 \cdot 71, R_{\mathrm{G}^{\prime}-\mathrm{C}} 1 \cdot 40, R_{\mathrm{F}-\mathrm{C}} 0.89 ; M n_{\mathrm{D}}^{20^{\circ}}$ $223 \cdot 42$. Densities determined : $d_{4^{\circ}}^{20} 0 \cdot 8897, d_{4^{\circ}}^{6 \cdot 0^{\circ}} 0 \cdot 8577, d_{4^{\circ}}^{85 \cdot 2^{\circ}} 0 \cdot 8415$.

$\gamma_{20}=30.86(0.09) . \quad$ Apparatus A.											
t.	h.	H.	$d_{4}^{\text {to }}$.	γ.	P.	t.	h.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.
$20.5{ }^{\circ}$	18.74	18.50	0.8893	$30 \cdot 81$	$398 \cdot 1$	$84.9{ }^{\circ}$	16.02	15.78	$0 \cdot 8417$	$24 \cdot 87$	398.7
$61 \cdot 2$	$17 \cdot 02$	16.78	$0 \cdot 8594$	26.99	398.7					Mean	$398 \cdot 5$

(Tudor and Vogel, loc. cit., give b. p. $82-82 \cdot 5^{\circ} / 10 \mathrm{~mm}$., $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 8897, n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 4870$.)

* 2-Methylene-trans-hexahydrohydrindene.-This was prepared by the thermal decomposition of pure trans-hexahydrohydrindene-2:2-diacetic acid and fractionated over sodium. B. p. $59-60^{\circ} / 9.5 \mathrm{~mm} . ; ~ M=136.23 ; n_{\mathrm{o}} 1.46921, n_{\mathrm{D}} 1.47204, n_{\mathrm{F}} 1.47902, n_{\mathrm{G}} .1 \cdot 48436 ; R_{\mathrm{C}} 43.81$, $R_{\mathrm{D}} 44.05, R_{\mathrm{F}} 44.59, R_{\mathrm{G}^{\prime}} 45.02 ; R_{\mathrm{G}^{\prime}-\mathrm{C}} 1.21, R_{\mathrm{F}-\mathrm{c}} 0.78 ; M n_{\mathrm{D}}^{20^{\circ}} 200.53$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 8663, d_{4^{\circ}}^{62 \cdot 0^{\circ}} 0 \cdot 8347, d_{4}^{85 \cdot 8^{\circ}} 0 \cdot 8163$.
$\gamma_{20^{\circ}}=28.83(0.09) . \quad$ Apparatus A.

t.	h.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.	t.	h.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.
$21.3{ }^{\circ}$	17.96	17.72	$0 \cdot 8653$	28.71	$364 \cdot 5$	$85.5{ }^{\circ}$	15-16	$14 \cdot 92$	$0 \cdot 8165$	$22 \cdot 81$	$364 \cdot 7$
$63 \cdot 0$	16.24	16.00	$0 \cdot 8339$	24.98	$365 \cdot 2$					Mean	$364 \cdot 8$

(Tudor and Vogel, loc. cit., give b. p. $59-60^{\circ} / 9.5 \mathrm{~mm}$., $d_{4^{\circ}}^{20^{\circ}} 0.8663, n_{\mathrm{D}}^{20^{\circ}} 1.4720$.)
cycloPentanol.-60 G. of cyclopentanone, purified through the bisulphite compound, were mixed with 300 c.c. of ether and 300 c.c. of water in Pyrex 3-litre round-bottomed flask provided with a long reflux condenser with a wide inner tube. The flask was cooled in running water, and 72 g . of sodium were added slowly during 5 hours. The white solid which separated at first passed into solution upon vigorous shaking. After a further 12 hours, all the sodium had reacted, the ethereal layer was removed, the aqueous layer saturated with " AnalaR" sodium chloride, and extracted twice with ether. The combined ethereal solutions were washed with water, dried (anhydrous sodium sulphate), and distilled ; cyclopentanol ($25-30 \mathrm{~g}$.) passed over at $138-139^{\circ}$, and a yellow viscid liquid (cyclopentylcyclopentanol, $20-25 \mathrm{~g}$.) remained in the flask. The cyclopentanol was tested with semicarbazide acetate but no trace of ketone could be detected. Upon redistillation from a fractionating Claisen flask, it boiled constantly at $139^{\circ} / 760 \mathrm{~mm}$. $M=86.13 ; n_{\mathrm{C}} 1.45087, n_{\mathrm{D}} 1 \cdot 45317, n_{\mathrm{F}} 1 \cdot 45863, n_{\mathrm{G}} \cdot 1 \cdot 46271 ; R_{\mathrm{C}} 24 \cdot 46, R_{\mathrm{D}} 24 \cdot 57, R_{\mathrm{F}} 24 \cdot 82$, $R_{\mathrm{G}}{ }^{\circ} 25 \cdot 01 ; R_{\mathrm{G}^{\prime}-\mathrm{C}} 0 \cdot 55, R_{\mathrm{F}-\mathrm{C}} 0 \cdot 36 ; M n_{\mathrm{D}}^{20^{\circ}} 125 \cdot 16$. Densities determined : $d_{4^{\circ}}^{20{ }^{\circ}} 0.9478, d_{4^{\circ}}^{63 \cdot 4^{\circ}}$ $0.9138, d_{4}^{87 \cdot 0^{\circ}} 0.8925$.

t.	n.	H.	d_{4}^{0}.	γ.	P.	t.	h.	H.	$d^{t_{4}^{\circ}}$.	γ.	P.
21.0°	$18 \cdot 32$	18.08	0.9470	32.06	216.4	$86.6{ }^{\circ}$	16.04	$15 \cdot 80$	$0 \cdot 8928$	26.41	218.7
$62 \cdot 0$	$17 \cdot 11$	$16 \cdot 87$	0.9149	28.90	$218 \cdot 3$					Mean	$217 \cdot 8$

(Wislicenus and Hentzschel, Annalen, 1893, 275, 322, give b. p. $139^{\circ}, d_{4_{0}}^{21 \cdot 5^{\circ}} 0.9395$; v. Auwers, ibid., 1918, 415, 143, gives b. p. $140 \cdot 6-140 \cdot 8^{\circ}, d_{4^{\circ}}^{13 \cdot 9^{\circ}} n_{a}^{13 \cdot 5^{\circ}} 1 \cdot 45387, n_{\mathrm{D}}^{18 \cdot 5^{\circ}} 1.45600, n_{\beta}^{13 \cdot 5^{\circ}}$ $1.46169, n_{\gamma}^{1 \cdot 55^{\circ}} 1.46649$; Vavon, Ann. Chim., 1914, 1, 186, gives b. p. $140-141^{\circ}, d_{4^{\circ}}^{18^{\circ}} 0.946, n_{\mathrm{D}}^{18^{\circ}}$ 1.453 ; Eisenlohr, loc. cit., gives b. p. $139^{\circ} / 735 \mathrm{~mm}$.)
cycloPentylcyclopentanol.-The high-b. p. residues from several preparations of cyclopentanol were combined and distilled twice under diminished pressure. The pure compound passed over at $100^{\circ} / 3 \mathrm{~mm} . \quad M=152.24 ; n_{\mathrm{C}} 1.48930, n_{\mathrm{D}} 1.49194, n_{\mathrm{F}} 1.49840, n_{\mathrm{G}}, 1.50314 ; R_{\mathrm{C}} 45 \cdot 00, R_{\mathrm{D}}$ $45 \cdot 20, R_{\mathrm{F}} 45 \cdot 71, R_{\mathrm{G}}, 46 \cdot 07 ; R_{\mathrm{G}}-\mathrm{c} 1 \cdot 07, R_{\mathrm{F}-\mathrm{C}} 0.71 ; M n_{\mathrm{D}}^{20^{\circ}} 230 \cdot 11$. Densities determined : $d_{4^{\circ}}^{20^{\circ}}$ $0.9898, \tilde{d}_{4}^{63 \cdot 5^{\circ}} 0.9586, d_{4^{87}}{ }^{80} 0.9393$.

t.	$\gamma_{20^{\circ}}=36.20(0.09) . \quad$ Apparatus C.										
	h.	H.	$d_{4}^{i^{\text {c }}}$.	γ.	P.	t.	h.	H.	$d_{4}^{\text {dio }}$.	γ.	P.
$22.1{ }^{\circ}$	14.92	14.68	0.9880	36.01	$382 \cdot 4$	87.0°	$13 \cdot 10$	12.86	0.9395	$30 \cdot 00$	$384 \cdot 2$
63.5	13.72	$13 \cdot 48$	0.9586	32.08	382.9					Mean	$383 \cdot 2$

cycloPentene. -100 G . of phosphoric oxide were placed in a $250 \mathrm{c} . \mathrm{c}$. Claisen flask, which was attached by means of a condenser to a Perkin triangle; the receiver (100 c.c. round-bottomed flask) was cooled in a mixture of ice and salt. 50 G . of pure redistilled cyclopentanol were added during 90 minutes; a liquid passed over at $41-46^{\circ}$. The distillate was dried with anhydrous sodium sulphate and distilled from a fractionating Claisen flask; the whole of the liquid passed over at $44 \cdot 3-44 \cdot 4^{\circ} / 761 \mathrm{~mm}$. A middle fraction, b. p. $44 \cdot 3^{\circ} / 761 \mathrm{~mm}$., was collected for the measurement of the physical properties. $\quad M=68 \cdot 11 ; n_{\mathrm{C}} 1.41984, n_{\mathrm{D}} 1 \cdot 42246, n_{\mathrm{F}} 1 \cdot 42904$, $n_{\mathrm{G}^{\prime}} 1.43398 ; R_{\mathrm{C}} 22 \cdot 27, R_{\mathrm{D}} 22 \cdot 40, R_{\mathrm{F}} 22 \cdot 70, R_{\mathrm{G}^{\prime}} 22.93 ; R_{\mathrm{G}^{\prime}-\mathrm{C}} 0 \cdot 66, R_{\mathrm{F}-\mathrm{C}} 0 \cdot 43 ; M n_{\mathrm{D}}^{20^{\circ}} 96 \cdot 89$. Density determined : $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 7736$ (temp. coeff., assumed, $0 \cdot 0008$ per 1°).

t.	h.	H.	$d_{4^{\circ}}^{t^{\circ}}$	γ.	P.	
17.2°	$16 \cdot 13$	$15 \cdot 89$	0.7756	$23 \cdot 08$	$192 \cdot 7$	App. A
17.9	12.25	$12 \cdot 01$	0.7753	$23 \cdot 11$	192.8	App. C

(Harries and Tank, Ber., 1908, 41, 1703, give b. p. 45-46 ${ }^{\circ}, d_{4^{\circ}}^{14^{\circ}} 0 \cdot 7754, n_{\mathrm{D}}^{1{ }^{4}} 1 \cdot 4208$; Filipow, Centr., 1915, i, 1057, gives b. p. $44 \cdot 1-44 \cdot 6^{\circ} / 752 \mathrm{~mm} ., d_{4^{\circ}}^{18^{\circ}} 0.7743, n_{\mathrm{D}}^{18^{\circ}} 1 \cdot 4218$; v. Auwers, Annalen, 1918, 415, 144, b. p. 43.6-43.8 ${ }^{\circ}$, $d_{4^{8.75}}{ }^{\circ} 0.7864, n_{a}^{7.1^{\circ}} 1 \cdot 4282, n_{\mathrm{D}}^{7 \cdot 1^{\circ}} 1 \cdot 4305, n_{\beta}^{7 \cdot 1^{\circ}} 1 \cdot 4375$, $n_{\gamma}^{7 \cdot 1^{\circ}} 1.4431$; Eisenlohr, loc. cit., b. p. $45^{\circ} / 760 \mathrm{~mm}$.; Godchot, loc. cit., b. p. $44-45^{\circ} / 763 \mathrm{~mm}$., $d_{13 \cdot 5^{\circ}}^{13 \cdot 5^{\circ}} 0 \cdot 7783, n_{\mathrm{D}}^{13 \cdot 5^{\circ}} 1 \cdot 4256, n_{\mathrm{H}_{g-\alpha}^{13 \cdot}}^{13 \cdot 5^{\circ}} 1 \cdot 4371, P 193$.)
cycloPentane.- 16 G . of pure cyclopentene, $80 \mathrm{c} . \mathrm{c}$. of absolute alcohol, and 0.4 g . of Adams's platinum catalyst were shaken in hydrogen. The absorption was theoretical after 6 hours. The liquid was poured off from the platinum, $800 \mathrm{c} . \mathrm{c}$. of water added, the mixture saturated with " AnalaR" sodium chloride, and the hydrocarbon layer (14 g .) removed. The latter was dried with calcium chloride and then distilled from sodium in a fractionating Claisen flask. The whole boiled constantly at $48.4-48 \cdot 6^{\circ} / 763 \mathrm{~mm} . \quad M=70 \cdot 13 ; n_{\mathrm{C}} 1.40464, n_{\mathrm{D}} 1.40672, n_{\mathrm{F}} 1.41166$, $n_{\mathrm{G}}, 1.41520 ; R_{\mathrm{C}} 22.97, R_{\mathrm{D}} 23.09, R_{\mathrm{F}} 23.34, R_{\mathrm{G}^{\prime}} 23.51 ; R_{\mathrm{G}^{\prime}-\mathrm{C}} 0.54, R_{\mathrm{F}-\mathrm{C}} 0.37 ; M n_{\mathrm{D}}^{20^{\circ}} 98.65$. Density determined : $d_{4^{\circ}}^{20^{\circ}} 0.7471$ (temp. coeff. assumed, 0.0008 per 1°).

t.	h.	H.	$d 4^{\circ}$.	γ.	P.	
$17 \cdot 1^{\circ}$	16.58	$16 \cdot 34$	0.7494	$22 \cdot 93$	$205 \cdot 0$	App. A
$17 \cdot 5$	13.24	13.00	0.7491	$22 \cdot 84$	$204 \cdot 9$	App. B
					Mean	$205 \cdot 0$

(Wislicenus and Hentzschel, loc. cit., give b. p. $50 \cdot 2-50 \cdot 8^{\circ}, d_{4 \cdot}^{20 \cdot 5^{\circ}} 0 \cdot 7506, n_{\mathrm{D}}^{200^{\circ}} 1 \cdot 4039$; Eykman, Chem. Weekblad, 1906, 3, 687, gives $d_{4^{\circ}}^{20 \cdot 1^{\circ}} 0 \cdot 7543, n_{a}^{20 \cdot 1^{\circ}} 1 \cdot 4064, n_{\beta}^{20 \cdot 1^{\circ}} 1 \cdot 41173, n_{\gamma}^{20 \cdot 1^{\circ}} 1 \cdot 42589$; Eyk-
 $1.41481, n_{\gamma}^{14 \cdot 7^{\circ}} 1.41891$; Rosanow, Centr., 1916, i, 925, $d_{40^{20}}^{20.7447,} n_{0}^{20^{\circ}} 1.4075$; Eisenlohr, loc. cit., b. p. $50.0^{\circ} / 756 \mathrm{~mm}$., $d_{4^{\circ}}^{20^{\circ}} 0.7510, n_{a}^{20^{\circ}} 1 \cdot 40383, n_{\mathrm{Ho}}^{20^{\circ}} 1.40609, n_{\beta}^{20^{\circ}} 1.41126, n^{20^{\circ}} 1.41536$; Godchot, loc. cit., b. p. $49^{\circ} / 760 \mathrm{~mm}$., $d_{13 \cdot 5^{\circ}}^{13 \cdot 50^{\circ}} 0 \cdot 7502, n_{\mathrm{D}}^{13 \cdot 5^{\circ}} 1 \cdot 4100, n_{\mathrm{H}^{\circ}-\mathrm{a}}^{19 \cdot 5} 1 \cdot 4193, P 205$.)

3-Methylcyclopentanol.-This was prepared from 75 g . of pure 3-methylcyclopentanone, 500 c.c. of ether, 375 c.c. of water, and 80 g . of sodium in a 4 -litre flask; the experimental details were similar to those described under cyclopentanol. Upon working the product up in the usual manner, 43 g . of the alcohol, b. p. $151-154^{\circ}$, and 19 g . of a high-b. p. residue were
obtained. Redistillation gave pure 3-methylcyclopentanol, b. p. $152^{\circ} / 766 \mathrm{~mm} . \quad M=100 \cdot 16$; $n_{\mathrm{C}} 1 \cdot 44485, n_{\mathrm{D}} 1 \cdot 44736, n_{\mathrm{F}} 1 \cdot 45253, n_{\mathrm{G}}, 1 \cdot 45656 ; R_{\mathrm{C}} 29 \cdot 22, R_{\mathrm{D}} 29 \cdot 37, R_{\mathrm{V}} 29 \cdot 66, R_{\mathrm{G}}, 29 \cdot 89$; $R_{G^{\prime}-\mathrm{C}} 0.67, R_{\mathrm{F}-\mathrm{c}} 0.44 ; M n_{\mathrm{D}}^{200^{\circ}} 144 \cdot 97$. Densities determined: $d_{4^{\circ}}^{200^{\circ}} 0.9120, d_{6^{\circ}}^{61 \cdot 7^{\circ}} 0.8807, d_{4^{\circ}}^{85 \cdot 9^{\circ}}$ $0 \cdot 8601$.

t.	h.	H.	d_{4}°.	γ.	P.	t.	h.	H.	$d_{4^{0}}^{0}$	γ.	P.
$18 \cdot 5^{\circ}$	$16 \cdot 82$	$16 \cdot 53$	$0 \cdot 9132$	$28 \cdot 35$	$253 \cdot 1$	$85 \cdot 6^{\circ}$	$14 \cdot 91$	$14 \cdot 67$	0.8603	$23 \cdot 63$	256.7
$62 \cdot 3$	$15 \cdot 59$	$15 \cdot 35$	0.8803	$25 \cdot 30$	$255 \cdot 2$					Mean $255 \cdot 0$	

(Godchot and Taboury, Bull. Soc. chim., 1913, 13, 592, give b. p. $148-149^{\circ}, d^{16^{\circ}} 0.9158$, $n_{\mathrm{D}}^{16^{\circ}} 1 \cdot 4487$.)

1-Methyl- Δ^{2}-cyclopentene.-This was prepared similarly to cyclopentene from 70 g . of the pure alcohol and 150 g . of phosphoric oxide. The Claisen flask was immersed in a glycerol-bath at $110-115^{\circ}$, the alcohol added during 2 hours, and heating continued for a further hour; a liquid which passed over at $69-74^{\circ}(23 \mathrm{~g}$.) was dried with anhydrous sodium sulphate and distilled. Pure 1 -methyl- Δ^{2}-cyclopentene passed over at $72^{\circ} / 770 \mathrm{~mm}$.; a small high-b. p. residue (2.4 g .) remained in the flask. $M=82.14 ; n_{\mathrm{C}} 1.42214, n_{\mathrm{D}} 1.42476, n_{\mathrm{F}} 1.43120, n_{\mathrm{G}}$, $1 \cdot 43573 ; R_{\mathrm{C}} 27 \cdot 10, R_{\mathrm{D}} 27 \cdot 25, R_{\mathrm{F}} 27 \cdot 51, R_{\mathrm{G}} \cdot 27 \cdot 86 ; R_{\mathrm{G} \cdot \mathrm{C}} 0 \cdot 76, R_{\mathrm{F}-\mathrm{c}} 0 \cdot 41 ; M n_{\mathrm{D}}^{20^{\circ}} 117 \cdot 03$.

$\gamma_{20^{\circ}}=22.68(0.12)$						
t.	h.	H.	$d_{4^{\circ \circ}}^{\circ}$	γ.	P.	
20.0°	12.79	12.55	0.7705	22.68	$232 \cdot 8$	App. B
18.9	16.04	15.80	0.7715	22.81	232.9	App. A

Methylcyclopentane.-14.5 G. of pure 1-methyl- Δ^{2}-cyclopentene, 75 c.c. of absolute alcohol, and 0.4 g . of Adams's platinum catalyst were shaken in hydrogen for 20 hours; the absorption of hydrogen was theoretical. When the product was worked up as usual and distilled from sodium in a fractionating Claisen flask, the whole passed over at $70 \cdot 8-71 \cdot 1^{\circ} / 751 \mathrm{~mm}$. A middle fraction, b. p. $70 \cdot 9-71 \cdot 0^{\circ} / 751 \mathrm{~mm}$., was collected for the physical measurements. $M=84 \cdot 16$; $n_{\mathrm{O}} 1.40788, n_{\mathrm{D}} 1.40998, n_{\mathrm{F}} 1.41511, n_{\mathrm{G}} \cdot 1.41824 ; R_{\mathrm{C}} 27 \cdot 63, R_{\mathrm{D}} 27 \cdot 77, R_{\mathrm{F}} 28 \cdot 07, R_{\mathrm{G}^{\prime}} 28.24$; $R_{\mathbf{a}^{\prime}-\mathrm{c}}$ $0 \cdot 81, R_{\mathrm{F}-\mathrm{c}} 0 \cdot 44 ; M n_{\mathrm{D}}^{20^{\circ}} 118 \cdot 67$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 7510, d_{4^{4-2^{\circ}}} 0 \cdot 7293$.

$\gamma_{20^{\circ}}=22 \cdot 30(0 \cdot 12)$						
t.	h.	H.	$d_{4^{\circ}}^{\circ}$.	γ.	P.	
$19 \cdot 5^{\circ}$	12.88	$12 \cdot 64$	0.7515	$22 \cdot 27$	243.5	App. B
41.2	11.87	11.63	0.7293	19.88	$244 \cdot 0$	App. B
14.8	16.48	16.24	0.7562	$23 \cdot 00$	243.9	App. A
40.2	14.81	14.57	0.7303	$19 \cdot 92$	$243 \cdot 8$	App. A

(Zelinsky and Moser, Ber., 1902, 35, 2686, give b. p. $71^{\circ} / 743 \mathrm{~mm}$., $d_{4^{\circ}}^{19 \cdot 5^{\circ}} 0.7488, n_{\mathrm{D}}^{19 \cdot 5^{\circ}} 1.4096$; Zelinsky, Ber., 1911, 44, 2781, gives b. p. 72-72.2 ${ }^{\circ}$, $d_{40^{20}}{ }^{\circ} 0.7474, n_{\mathrm{D}}^{21^{\circ}} 1.4088$; Eisenlohr, loc. cit., b. p. $70 \cdot 0-70 \cdot 5^{\circ} / 755 \mathrm{~mm}$., $d_{4^{\circ}}^{20^{\circ}} 0.7459, n_{a}^{20^{\circ}} 1.40750, n_{\text {He }}^{20^{\circ}} 1.40947, n_{\beta}^{20^{\circ}} 1.41465, n_{\gamma}^{200^{\circ}} 1.41868$; Godchot, loc. cit., b. p. $71 \cdot 5-72 \cdot 5^{\circ} / 760 \mathrm{~mm}$., $d_{13 \cdot 5^{\circ}}^{13 \cdot 5^{\circ}} 0.7511, n_{\mathrm{D}}^{13 \cdot 5^{\circ}} 1 \cdot 4111, n_{\mathrm{Hg}-\mathrm{a}}^{13 \cdot{ }^{\circ}} 1 \cdot 4202, P 244$.)
cycloHexanol.-This was prepared from 50 g . of cyclohexanone (ex bisulphite compound), $250 \mathrm{c} . \mathrm{c}$. of 10% sodium hydroxide solution, $300 \mathrm{c} . \mathrm{c}$. of ether, and 60 g . of sodium. 45 G . of a liquid, b. p. $158-161^{\circ}$, and about 3 g . of a high-b. p. residue were obtained (compare Bentley, J., $1895,67,264$). The crude alcohol was shaken with a large excess of aqueous-alcoholic sodium bisulphite solution, but no solid separated after standing for 20 hours. The upper layer was removed, and the aqueous layer saturated with "AnalaR" sodium chloride and extracted three times with ether. The combined extracts were then distilled and the fraction, b. p. 159-161 , collected. This was dried over anhydrous sodium sulphate and again distilled; it passed over constantly at $159^{\circ} / 755 \mathrm{~mm} . \quad M=100 \cdot 6 ; n_{\mathrm{C}} 1.46390, n_{\mathrm{D}} 1.46600, n_{\mathrm{F}} 1.47196, n_{\mathrm{G}} .1 .47639$; $R_{\mathrm{C}} 29.04, R_{\mathrm{D}} 29 \cdot 16, R_{\mathrm{F}} 29.48, R_{\mathrm{G}} \cdot 29.71 ; R_{\mathrm{G}-\mathrm{c}} 0 \cdot 67, R_{\mathrm{F}-\mathrm{c}} 0.44 ; M n_{\mathrm{D}}^{20^{\circ}} 148.88$.*

Apparatus A.

t.	h.	H.	$d_{4}^{\text {for. }}$	γ.	P.	t.	h.	H.	d_{4}^{0}.	γ.	P.
$\dagger 18.5^{\circ}$	18.95	18.71	0.9527	$33 \cdot 38$	$252 \cdot 6$	86.3°	$16 \cdot 33$	16.09	0.8967	$27 \cdot 02$	$254 \cdot 8$
$61 \cdot 8$	16.89	16.65	0.9178	$28 \cdot 61$	$252 \cdot 4$					Mean	$253 \cdot 3$

* The observations at 20° were made with the supercooled liquid.
\dagger Supercooled liquid.
(v. Auwers, Hinterseber, and Treppmann, loc. cit., give, inter alia, b. p. $66-69^{\circ} / 15 \mathrm{~mm}$., $d_{4^{\circ}}^{22 \cdot 6^{\circ}} 0.9463, n_{a}^{22 \cdot 6^{\circ}} 1 \cdot 46330, n_{\mathrm{D}}^{22 \cdot 6^{\circ}} 1 \cdot 46560, n_{\beta}^{22 \cdot 6^{\circ}} 1 \cdot 47141, n_{\gamma}^{22 \cdot 6^{\circ}} 1 \cdot 47623$.)
cycloHexene. $\mathbf{3 6} \mathrm{G}$. of pure cyclohexanol were dehydrated with a little concentrated sulphuric acid (" Organic Syntheses," $1925,5,33$), and 20 g . of the crude hydrocarbon obtained. This was dried with anhydrous sodium sulphate and distilled; b. p. $83^{\circ} / 777 \mathrm{~mm} . \quad M=82 \cdot 14$; $n_{\mathrm{C}} 1 \cdot 44369, n_{\mathrm{D}} 1 \cdot 44646, n_{\mathrm{F}} 1 \cdot 45326, n_{\mathrm{G}} 1.45854 ; R_{\mathrm{C}} 26.96, R_{\mathrm{D}} 27 \cdot 11 ; R_{\mathrm{F}} 27 \cdot 47, R_{\mathrm{G}} .27 \cdot 74$;
 0.7731

$\gamma_{20^{\circ}}=26.56(0 \cdot 12)$.						
t.	h.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.	
$22.7{ }^{\circ}$	17.61	17.37	$0 \cdot 8064$	$26 \cdot 23$	$230 \cdot 6$	App. A
41.9	16.46	16.22	$0 \cdot 7890$	$23 \cdot 96$	230.5	App. A
61.8	$15 \cdot 26$	15.02	$0 \cdot 7713$	$21 \cdot 69$	$230 \cdot 3$	App. A
$17 \cdot 4$	13.59	$13 \cdot 35$	$0 \cdot 8111$	26.88	$230 \cdot 6$	App. B
$42 \cdot 1$	12.44	$12 \cdot 20$	$0 \cdot 7888$	$\underline{23} 89$	$230 \cdot 2$	App. B
$61 \cdot 1$	11.53	$11 \cdot 29$	$0 \cdot 7720$	$21 \cdot 64$	229.9	App. B
					$230 \cdot 4$	

(v. Auwers, Hinterseber, and Treppmann, loc. cit., give b. p. $83-83 \cdot 5^{\circ} / 760 \mathrm{~mm}$., $d_{4^{\circ}}^{15 \cdot{ }^{\circ}} 0 \cdot 8147$, $n_{a}^{15 \cdot 1^{\circ}} 1 \cdot 44653, n_{\mathrm{D}}^{15 \cdot 1^{\circ}} 1 \cdot 44921, n_{\beta}^{15 \cdot 1^{\circ}} 1 \cdot 45620, n_{\gamma}^{15 \cdot 1^{\circ}} 1 \cdot 46194$; Godchot, loc. cit., gives b. p. $83 \cdot 5^{\circ} / 758$ $\mathrm{mm} ., d_{13 \cdot 5^{\circ}}^{13 \cdot 5^{\circ}} 0 \cdot 8183, n_{\mathrm{D}}^{13 \cdot 5^{\circ}} 1.4494, n_{\mathrm{Hg}-\alpha}^{13 \cdot 5^{\circ}} 1.4619, P 230$.)
cycloHexane.- 14 G . of pure cyclohexene, $150 \mathrm{c} . \mathrm{c}$. of rectified spirit, and 0.2 g . of Adams's platinum catalyst were shaken in hydrogen; the absorption was theoretical after 6 hours. After being worked up as before and distilled over sodium, pure cyclohexane (13 g .) passed over at $80 \cdot 2^{\circ} / 763 \mathrm{~mm}$. $M=84 \cdot 16 ; n_{\mathrm{C}} 1 \cdot 42437, n_{\mathrm{D}} 1 \cdot 42656, n_{\mathrm{F}} 1 \cdot 43184, n_{\mathrm{G}} .1 \cdot 43580 ; R_{\mathrm{C}} 27 \cdot 63$, $R_{\mathrm{D}} 27.75, R_{\mathrm{F}} 28.05, R_{\mathrm{G}}, 28.27 ; R_{\mathrm{G}^{\prime}-\mathrm{C}} 0.64, R_{\mathrm{F}-\mathrm{C}} 0.42 ; M n_{\mathrm{D}}^{20^{\circ}} 120.06$. Densities determined : $d_{4}^{20^{\circ}} 0 \cdot 7780, d_{4}^{4 \cdot 6^{\circ}} 0.7555$.

$\gamma_{20^{\circ}}=25 \cdot 05(0 \cdot 11)$.											
t.	h.	H.	$d_{4}^{\text {to }}$.	γ.	P.	t.	h.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.
$25 \cdot 6{ }^{\circ}$	$16 \cdot 87$	16.63	0.7730	$24 \cdot 07$	241-3*	20.5°	13.23	12.99	0.7772	$25 \cdot 06$	242.3**
$42 \cdot 9$	15.93	$15 \cdot 69$	0.7570	$\underline{2} \cdot 24$	241.7*	$43 \cdot 6$	12.18	11.94	$0 \cdot 7564$	22.42	242.4**
$22 \cdot 4$	17-13	16.89	$0 \cdot 7758$	24.53	241.4*					Mean	$241 \cdot 8$

[Zelinsky, Ber., 1901, 34, 2802, gives b. p. $80 \cdot 8-80.9^{\circ}$, $d_{4^{\circ}}^{19 \cdot 5^{\circ}} 0.7788, n_{\mathbf{D}}^{19 \cdot 5^{\circ}} 1 \cdot 4266$; Eykman, loc. cit., 1906, gives $d_{4^{\circ}}^{16 \cdot 1^{\circ}} 0 \cdot 7820, n_{a}^{16 \cdot 1^{\circ}} 1 \cdot 42626, n_{\beta}^{16 \cdot 1^{\circ}} 1 \cdot 43381, n_{\gamma}^{16 \cdot 1^{\circ}} 1 \cdot 43820$; v. Auwers, Hinterseber, and Treppmann, loc. cit., give, for a purified commercial specimen, b. p. $80 \cdot 0-80 \cdot 2^{\circ} / 749$ mm ., $d_{4^{\circ}}^{10^{\circ} 85^{\circ}} 0.7872, n_{a}^{10 \cdot 85^{\circ}} 1.42910, n_{\mathrm{D}}^{10.85^{\circ}} 1.43119, n_{\beta}^{10 \cdot 85^{\circ}} 1.43668, n_{\gamma}^{10.85^{\circ}} 1.44116$; Eisenlohr, loc. cit., gives b. p. $80 \cdot 3^{\circ} / 750 \mathrm{~mm}$., $d_{4 \circ^{20}}^{20} 0 \cdot 7783, n_{a}^{20^{\circ}} 1 \cdot 42476, n_{\mathrm{He}}^{20^{\circ}} 1 \cdot 42680, n_{\beta}^{20^{\circ}} 1.43229, n_{\gamma}^{20^{\circ}} 1.43668$ (from benzene and platinum-black in acetic acid solution): b. p. $80 \cdot 5^{\circ} / 756 \mathrm{~mm}$., $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 7782, n_{a}^{20} 1 \cdot 42496$, $n_{\mathrm{He}}^{20^{\circ}} 1.42700, n_{\beta}^{20^{\circ}} 1 \cdot 43260, n_{\gamma}^{20^{\circ}} 1.43705$ (from benzene and nickel at $180-190^{\circ}$); Timmermans and Martin, loc. cit., give b. p. $80.80^{\circ}, d^{15^{\circ}} 0.78310, n_{\mathrm{a}}^{15^{\circ}} 1.42670, n_{\mathrm{D}}^{15^{\circ}} 1.42886, n_{\mathrm{He}}^{15^{\circ}} 1.42890, n_{\beta}^{15^{\circ}}$ $1.43430, n_{\gamma}^{15^{\circ}} 1 \cdot 43870$; Godchot, loc. cit., gives b. p. $80.5^{\circ} / 758 \mathrm{~mm} ., d_{13 \cdot 5^{\circ}}^{13 \cdot 5^{\circ}} 0 \cdot 7820, n_{\mathrm{D}}^{13 \cdot 5^{\circ}} 1 \cdot 4272$, $n_{\mathrm{Hg} \cdot a}^{13 \cdot 5^{\circ}} 1 \cdot 4368, P 240 \cdot 14$.]

1-Methyl- Δ^{1}-cyclohexene.-cycloHexanone was converted by methylmagnesium iodide into 1-hydroxy-1-methylcyclohexane (Wallach, Annalen, 1908, 359, 298) ; upon distillation, this suffered dehydration by the trace of iodine present and gave the unsaturated hydrocarbon in good yield. To a Grignard reagent prepared from 15 g . of magnesium, 89 g . of methyl iodide, and $250 \mathrm{c} . \mathrm{c}$. of ether in a $1500-c . c$. three-necked flask were added 49 g . of cyclohexanone ($e x$ bisulphite compound) in $150 \mathrm{c} . \mathrm{c}$. of dry ether during 3 hours, the whole being mechanically stirred. Stirring was continued for a further hour, and the whole gently refluxed for 2 hours. The mixture was cooled in ice, decomposed with dilute sulphuric acid during 3 hours, the ethereal layer separated, the aqueous layer extracted with ether, and the combined ethereal solutions dried with anhydrous sodium sulphate. The ether was removed, and the resultant yellowish-brown liquid (the brown colour was due to iodine arising from the decomposition of the excess of Grignard reagent present) was distilled until a brown liquid commenced to pass over; a brown viscid residue remained in the flask. The distillate passed over below 110° and consisted of a mixture of water and an organic liquid; it was added to 1 l . of water, the upper layer removed (32 g .), washed with a little sodium thiosulphate solution, dried (anhydrous sodium sulphate), and distilled from sodium in a fractionating Claisen flask. The whole distilled constantly at $110 \cdot 0^{\circ} /$ 769 mm . and was obviously homogeneous. This is the most convenient method for preparing this hydrocarbon. $M=96 \cdot 17 ; n_{\mathrm{C}} 1.44766, n_{\mathrm{D}} 1 \cdot 45067, n_{\mathrm{F}} 1 \cdot 45745, n_{\mathrm{G}^{\prime}} 1.46259 ; R_{\mathrm{C}} 31 \cdot 66$,
$R_{\mathrm{D}} 31.84, R_{\mathrm{F}} 32.26, R_{\mathrm{G}} \cdot 32.57 ; R_{\mathrm{G}^{\prime}-\mathrm{C}} 0.91, R_{\mathrm{F}-\mathrm{c}} 0.60 ; M n_{\mathrm{D}}^{30^{\circ}} 139.51$. Densities determined: $d_{4^{\circ}}^{200^{\circ}} 0 \cdot 8127, d_{4^{4} \cdot 1^{\circ}}^{4} 0.7912, d_{4^{6}}^{6 \cdot 1^{\circ}} 0.7734$.

t.	$\gamma_{20^{\circ}}=20 \cdot 66$ (0.11). Apparatus A.										
	h.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.	t.	h.	H.	$d^{t^{\circ}}$.	γ.	P
14.2°	18.06	17.82	$0 \cdot 8182$	$27 \cdot 30$	$269 \cdot 3$	61.1°	$15 \cdot 49$	$15 \cdot 25$	$0 \cdot 7743$	$22 \cdot 11$	$269 \cdot 6$
$41 \cdot 4$	16.49	16.25	0.7918	24-10	269.2					Mean	$269 \cdot 4$

[Wallach, Annalen, 1908, 359, 298, gives b. p. 111-112 ${ }^{\circ}$, $d^{20^{\circ}} 0 \cdot 8110, n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 4496$ (dehydration with zinc chloride) ; v. Auwers and Ellinger, ibid., 1912, 387, 220, give b. p. 109•1-109•3 $/ 772$ mm ., $d_{44^{2}}{ }^{\circ} 0.8103, n_{\mathrm{D}}^{20^{\circ}} 1.4497$ (dehydration with oxalic acid at 150°); Roth and v . Auwers, ibid., 1915,407 , 154 , b. p. $109 \cdot 5-110 \cdot 5^{\circ} / 767 \mathrm{~mm}$., $d_{4}^{17 \cdot 9^{\circ}} 0 \cdot 8117, n_{a}^{17 \cdot 9^{\circ}} 1 \cdot 44763, n_{\mathrm{D}}^{17 \cdot 9^{\circ}} 1 \cdot 45042, n_{\beta}^{17 \cdot 9^{\circ}} 1 \cdot 45735$, $n_{\gamma}^{17 \cdot 9^{\circ}} 1.46328$ (dehydration with potassium bisulphate); Nametkin and Jarzew, Ber., 1923, 56, 1803 , b. p. $109-110^{\circ} / 753 \mathrm{~mm}$., $d_{4^{20}}^{2 \cdot 0^{\circ}} 0.8122, n_{D}^{20^{\circ}} 1.4503$ (dehydration with dilute nitric acid or 50% sulphuric acid); Eisenlohr, loc. cit., gives b. p. $108 \cdot 0-108 \cdot 5^{\circ} / 769 \mathrm{~mm} ., d_{40^{\circ}}^{20^{\circ}} 0.8106, n_{\mathrm{He}}^{20^{\circ}}$ 1.45017 (dehydration with phosphoric oxide); Godchot, loc. cit., gives b. p. $110 \cdot 6^{\circ} / 760 \mathrm{~mm}$., $d_{13 \cdot 5^{\circ}}^{13 \cdot 55^{\circ}} 0.8257, n_{\mathrm{D}}^{13 \cdot 5^{\circ}} 1.4543, n_{\mathrm{Hg}}^{13 \cdot 5^{\circ}} 1.4668, P 267$ (dehydration with phthalic anhydride).]

Methylcyclohexane from 1 -Methyl- Δ^{1}-cyclohexene. -20 G . of the pure unsaturated hydrocarbon and 0.4 g . of Adams's platinum catalyst were shaken in hydrogen, theoretical absorption taking place in 84 hrs . (reduction was extremely slow and incomplete when absolute alcohol was used as solvent). The liquid was decanted from the platinum, and distilled from sodium in a small fractionating Claisen flask, the whole passing over at $100 \cdot 3-100 \cdot 9^{\circ} / 773 \mathrm{~mm}$.; a middle fraction, b. p. $100 \cdot 4-100 \cdot 7^{\circ} / 773 \mathrm{~mm}$., was collected for the physical measurements. $M=$ $98 \cdot 18 ; n_{\mathrm{C}} 1 \cdot 42167, n_{\mathrm{D}} 1 \cdot 42410, n_{\mathrm{F}} 1 \cdot 42915, n_{\mathrm{G}} \cdot 1 \cdot 43301 ; R_{\mathrm{C}} 32 \cdot 36, R_{\mathrm{D}} 32 \cdot 53, R_{\mathrm{F}} 32 \cdot 87, R_{\mathrm{G}}, 33 \cdot 12$; $R_{\mathrm{G}, \mathrm{C}} 0.76, R_{\mathrm{F}-\mathrm{c}} 0.51 ; M n_{\mathrm{D}}^{20^{\circ}} 139.82$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 0.7704, d_{4^{\circ}}^{4 \cdot 1^{\circ}} 0.7512, d_{4^{\circ}}^{62 \cdot 1^{\circ}}$ 0.7344.

$$
\gamma_{20^{\circ}}=23.59(0 \cdot 10) . \quad \text { Apparatus } A
$$

t.	h.	H.	$d_{4^{\circ}}^{t^{\circ}}$	γ.	P.	t.	h.	H.	$d_{4^{\circ}}^{t^{\circ}}$	γ.	P.
$20 \cdot 2^{\circ}$	$16 \cdot 58$	$16 \cdot 34$	0.7702	23.57	$281 \cdot 0$	$61 \cdot 1^{\circ}$	14.34	$14 \cdot 10$	0.7353	$19 \cdot 41$	$280 \cdot 6$
$41 \cdot 7$	$15 \cdot 44$	15.20	0.7516	21.39	$281 \cdot 1$					Mean 280.9	

(Godchot, loc. cit., gives b. p. $100 \cdot 25^{\circ} / 758 \mathrm{~mm} ., d_{13 \cdot 5^{\circ}}^{13 \cdot 5^{\circ}} 0 \cdot 7738, n_{\mathrm{D}}^{13 \cdot 5^{\circ}} 1 \cdot 4255, n_{\mathrm{Hg} \cdot a}^{13 \cdot 5^{\circ}} 1 \cdot 4352, P 280$.)
2-Methylcyclohexanol.-90 G. of 2-methylcyclohexanone (ex bisulphite compound), 500 c.c. of ether, $375 \mathrm{c} . \mathrm{c}$. of water, and 75 g . of sodium yielded 78 g . of the alcohol, b. p. $165-169^{\circ}$ (chiefly $165-167^{\circ}$), and 5 g . of a high-b. p. residue. Upon redistillation, pure 2 -methylcyclohexanol passed over constantly at $165^{\circ} / 762 \mathrm{~mm} . \quad M=114 \cdot 18 ; n_{\mathrm{C}} 1.45844, n_{\mathrm{D}} 1 \cdot 46085, n_{\mathrm{F}}$ 1.46646 , $n_{\mathrm{G}}, 1.47060 ; R_{\mathrm{C}} 33 \cdot 69, R_{\mathrm{D}} 33 \cdot 85, R_{\mathrm{F}} 34 \cdot 20, R_{\mathrm{G}} \cdot 34 \cdot 46 ; R_{\mathrm{G} \cdot-\mathrm{c}} 0 \cdot 77, R_{\mathrm{F}-\mathrm{c}} 0.51$; $M n_{\mathrm{D}}^{20^{\circ}}$ 166.80. Densities determined : $d_{4^{\circ}}^{20{ }^{\circ}} 0 \cdot 9254, d_{4^{\circ}}^{62 \cdot 3^{\circ}} 0 \cdot 8914, d_{4^{\circ}}^{85 \cdot 3^{\circ}} 0 \cdot 8706$.

$\gamma_{20^{\circ}}=30.75$ (0.07). Apparatus A.											
t.	h.	H.	$d_{4}^{\text {co }}$.	γ.	P.	t.	h.	H.	$d_{4}^{c^{\circ}}$.	γ.	P.
$24.7{ }^{\circ}$	17.87	17.63	0.9215	$20 \cdot 42$	291.0	$86.6{ }^{\circ}$	15.95	$15 \cdot 71$	$0 \cdot 8697$	$25 \cdot 58$	$295 \cdot 3$
$61 \cdot 2$	17.04	16.80	$0 \cdot 8923$	$28 \cdot 07$	$294 \cdot 5$					Mean	$\underline{293 \cdot 6}$

(Sabatier and Mailhe, Ann. Chim., 1907, 10, 549, give b. p. $164 \cdot 5-165 \cdot 5^{\circ}, d_{4^{4}}^{10^{\circ}} 0.936, n_{\mathrm{D}}^{14^{\circ}}$ 1.462 ; Murat, ibid., 1909, 16, 108, gives b. p. $165-166^{\circ}, d^{20^{\circ}} 0.9332, n_{\mathrm{D}}^{20^{\circ}} 1.461$; v. Auwers, Hinterseber, and Treppmann, loc. cit., give b. p. 167.4-167.6 ${ }^{\circ}, d_{4^{\circ}}^{13.4^{\circ}} 0.9333, n_{a}^{13.4^{\circ}} 1.46352, n_{\mathrm{D}}^{13 \cdot 4^{\circ}}$ $1 \cdot 46585, n_{\beta}^{13 \cdot 4^{\circ}} 1 \cdot 47180, n_{\gamma}^{13 \cdot 4^{\circ}} 1 \cdot 47665$; Skita, Annalen, 1923, 431, 4, gives for cis-compound, b. p. $169.5-170.5^{\circ}, d_{4^{\circ}}^{200^{\circ}} 0.934, n_{\mathrm{D}}^{20^{\circ}} 1.4623$; for trans-compound, b. p. $116.2-166.7^{\circ}, d_{4^{\circ}}^{20^{\circ}} 0.929, n_{\mathrm{D}}^{20^{\circ}}$ 1.4590 ; Eisenlohr, loc. cit., gives for cis-compound, b. p. $170 \cdot 0^{\circ} / 755 \mathrm{~mm}$., $d_{4^{\circ}}^{20^{\circ}} 0.9280, n_{\mathrm{a}}^{20^{\circ}} 1 \cdot 46003$, $n_{\text {He }}^{20^{\circ}} 1.46225, n_{\beta}^{20^{\circ}} 1.46841, n_{\gamma}^{20^{\circ}} 1.47353$; for trans-compound, b. p. $168 \cdot 5^{\circ} / 750 \mathrm{~mm}$., $d_{4^{\circ}}^{20^{\circ}} 0.9254$, $n^{20^{\circ}} 1 \cdot 45943, n_{\mathrm{He}}^{20^{\circ}} 1 \cdot 46165, n_{\beta}^{20^{\circ}} 1 \cdot 46771, n_{\gamma}^{20^{\circ}} 1 \cdot 47284$.)

Hydrocarbon (I) from 2-Methylcyclohexanol.-70 G. of the pure alcohol and 165 g . of phosphoric oxide were heated in a glycerol-bath at $155-165^{\circ}$; liquid passed over at $105-110^{\circ}$ (24 g.). This was dried over anhydrous sodium sulphate and distilled from a fractionating Claisen flask; most of the distillate (ca. 85%) passed over at $105 \cdot 5-106 \cdot 5^{\circ} / 758 \mathrm{~mm}$., and there was a small fraction (ca. 10%), b. p. $108-109^{\circ} / 758 \mathrm{~mm}$., $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 8013, n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 4435$. The main fraction was redistilled, and that of b. p. $106^{\circ} / 758 \mathrm{~mm}$. was collected for the physical measurements. $\quad M=96 \cdot 17 ; n_{\mathrm{C}} 1.44357, n_{\mathrm{D}} 1.44616, n_{\mathrm{F}} 1.45245, n_{\mathrm{G}} .1 .45711 ; R_{\mathrm{C}} 31 \cdot 19, R_{\mathrm{D}} 32 \cdot 32$, $R_{\mathrm{F}} 32.72, R_{\mathrm{G}^{\prime}} 33.00 ; R_{\mathrm{G}^{\prime}-\mathrm{C}} 0.81, R_{\mathrm{F}-\mathrm{C}} 0.53 ; M n_{\mathrm{D}}^{20^{\circ}} 139.08$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.7938$, $d_{4^{4}}{ }^{\circ} 5^{\circ} 0 \cdot 7760, d_{4}^{62 \cdot 9^{\circ}} 0 \cdot 7584$.

$\gamma_{20^{\circ}}=25 \cdot 24(0 \cdot 10) . \quad$ Apparatus A.											
t.	h.	H.	${ }_{4}^{\text {c }}$.	γ.	P.	t.	h.	H.	$d_{4{ }^{\text {c }}}{ }^{\circ}$.	γ.	P.
$23.3{ }^{\circ}$	$17 \cdot 06$	16.82	0.7911	$24 \cdot 91$	$271 \cdot 6$	62.3°	14.92	14.68	0.7589	$20 \cdot 86$	271 -1
$42 \cdot 0$	16.06	$15 \cdot 82$	0.7764	$23 \cdot 00$	$271 \cdot 5$					Mean	$271 \cdot 4$

(Wallach, Annalen, 1908, 359, 298, gives, for hydrocarbon obtained by dehydration of 2methylcyclohexanol with zinc chloride, b. p. 106-108 $, d^{17^{\circ}} 0 \cdot 7990, n_{\mathrm{D}}^{17^{\circ}} 1 \cdot 4428$, and states that it is largely the Δ^{1}-compound.)

Reduction of hydrocarbon (I). 20 G . of (I), b. p. $105 \cdot 5-106.5^{\circ} / 758 \mathrm{~mm} ., 0.4 \mathrm{~g}$. of Adams's platinum catalyst, and 125 c.c. of rectified spirit were shaken in hydrogen; only 60% of the theoretical volume was absorbed after 30 hours, reaction then having become very slow. The liquid was decanted from the platinum, poured into 700 c.c. of water, the upper layer separated (18 g.), and the aqueous liquid saturated with " AnalaR" sodium chloride, whereupon a further 1 g . of liquid was separated. The combined liquids were dried with calcium chloride and distilled from sodium; about 75% passed over at $100.7-101.2^{\circ} / 766 \mathrm{~mm}$., and the remainder distilled up to $102 \cdot 5^{\circ} / 766 \mathrm{~mm}$. The liquid decolourised 1% potassium permanganate solution, and was clearly not homogeneous. 14.5 G . of this liquid and 0.3 g . of Adams's platinum catalyst were shaken with hydrogen in the absence of a solvent for 15 hours, the theoretical amount of hydrogen required for complete absorption then having been absorbed. The liquid was poured off from the catalyst and distilled from sodium ; it boiled constantly at $100 \cdot 2-100 \cdot 4^{\circ} / 768 \mathrm{~mm}$., the last $0.5 \mathrm{c} . \mathrm{c}$. having b. p. $100 \cdot 6-100 \cdot 8^{\circ} / 768 \mathrm{~mm}$. A middle fraction, b. p. $100 \cdot 2-100 \cdot 4^{\circ} / 768$ mm ., was collected for the physical measurements, which were determined after immersion in the thermostat for 8 hours. These were $d_{4}^{20^{\circ}} 0.7679, n_{\mathrm{O}} 1.42081, n_{\mathrm{D}} 1.42306, n_{\mathrm{F}} 1.42839, n_{\mathrm{G}}$ $1 \cdot 43230 ; R_{\mathrm{C}} 32 \cdot 41, R_{\mathrm{D}} 32 \cdot 56, R_{\mathrm{F}} 32.92, R_{\mathrm{G}} .33 \cdot 18 ; R_{\mathrm{G}^{\prime}-\mathrm{C}} 0.77 ; R_{\mathrm{F}-\mathrm{c}} 0.51 ; ~ M n_{\mathrm{D}}^{20} 139 \cdot 71$. After standing in a Pyrex tube for 7 days at the laboratory temperature or after being heated for $2-3$ hours at $40-60^{\circ}$, the hydrocarbon had $d_{4^{\circ}}^{20^{\circ}} 0.7694, n_{\mathrm{C}} 1.42093, n_{\mathrm{D}} 1.42316, n_{\mathrm{F}} 1.42846$, $n_{G}, 1 \cdot 43250$. These properties remained unchanged after 6 months' keeping. A detailed study of the influence of catalysts and temperature upon this hydrocarbon and those prepared by other methods is in progress.

3-Methylcyclohexanol.-70 G. of 3-methylcyclohexanone (ex bisulphite compound), 400 c.c. of ether, $300 \mathrm{c} . \mathrm{c}$. of water, and 58 g . of sodium yielded 56 g . of the alcohol, b. p. $172-174^{\circ}$, and 6 g . of a high-b. p. residue. Upon redistillation, 3-methylcyclohexanol boiled constantly at $172^{\circ} / 763 \mathrm{~mm} . \quad M=114 \cdot 18 ; \quad n_{\mathrm{C}} 1.45516, n_{\mathrm{D}} 1.45757, n_{\mathrm{F}} 1.46330, n_{\mathrm{G}}, 1 \cdot 46754 ; R_{\mathrm{C}} 33 \cdot 80$, $R_{\mathrm{D}} 33.96, R_{\mathrm{F}} 34 \cdot 32, R_{\mathrm{G}}, 34 \cdot 59 ; R_{\mathrm{G}-\mathrm{C}} 0.79, R_{\mathrm{F}-\mathrm{C}} 0.52 ; M n_{\mathrm{D}}^{20^{\circ}} 166.43$. Densities determined: $d_{4^{20}}^{20} 0.9168, d_{4^{6}}^{63 \cdot 7^{\circ}} 0.8827, d_{4}^{8 \cdot 2^{\circ}} 0.8631$.

$$
\gamma_{20^{\circ}}=27.75(0.06) . \quad \text { Apparatus } A
$$

t.	h.	H.	$d_{4}{ }^{\circ}$.	γ.	P.	t.	h.	H.	$d_{4^{\circ}}^{t^{\circ}}$.	γ.	P.
$23.1{ }^{\circ}$	16.37	$16 \cdot 13$	0.9143	$27 \cdot 62$	$286 \cdot 3$	$85.3{ }^{\circ}$	$14 \cdot 86$	14.62	$0 \cdot 8646$	23.67	291.3
$61 \cdot 3$	15.51	$15 \cdot 27$	$0 \cdot 8843$	$25 \cdot 27$	$289 \cdot 5$					Mean	$289 \cdot 0$

(Knoevenagel, Annalen, 1897, 297, 182, gives for cis-form, b. p. 174-175 ${ }^{\circ}, d^{16^{\circ}} 0.9191, n_{\mathrm{D}}^{16^{\circ}}$ 1.4579 ; for trans-form, ibid., 1896,289 , 142, b. p. $175-176^{\circ}, d^{15^{\circ}} 0.9320, n_{\mathrm{D}}^{15^{\circ}} 1.4695$; Wallach, ibid., 1896, 289, 343, gives b. p. 175-176 ${ }^{\circ}$, $d^{19^{\circ}} 0.914, n_{\mathrm{D}}^{19^{\circ}} 1.4581$; Zelinsky, Ber., 1897, 30, 1534, gives b. p. 173-174 ${ }^{\circ}$, $d_{4^{\circ}}^{21^{\circ}} 0.9137, n_{\mathrm{D}}^{21^{\circ}} 1.4575$; Kondakow and Schindelmeiser, J. pr. Chem., $1900,61,482$, give b. p. $174^{\circ} / 764 \mathrm{~mm}$., $d_{4{ }^{20}}{ }^{\circ} 0.9135, n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 45809$; Sabatier and Mailhe, loc. cit., give b. p. $172 \cdot 5^{\circ} / 745 \mathrm{~mm}$., $d_{4 \mathrm{4}^{2 \circ^{\circ}}} 0 \cdot 9336, n_{\mathrm{D}}^{12^{\circ}} 1 \cdot 460$; Gutt, Ber., $1907,40,2061$, gives b. p. $91 \cdot 5-$ $92.5^{\circ} / 35 \mathrm{~mm}$., $d_{4^{\circ}}^{20^{\circ}} 0.9144, n_{\mathrm{D}}^{20^{\circ}} 1.4555$; v. Auwers, Hinterseber, and Treppmann, loc. cit., give, inter alia, b. p. $76-78^{\circ} / 14 \mathrm{~mm}$., $d_{4^{\circ}}^{24 \cdot 3^{\circ}} 0.9182$, $n_{a}^{24 \cdot 3^{\circ}} 1.45217, n_{\mathrm{D}}^{24 \cdot 3^{\circ}} 1.45444, n_{\beta}^{24 \cdot 3^{\circ}} 1.46031, n_{\gamma}^{24 \cdot 3^{\circ}}$ $1 \cdot 46502$; Skita, loc. cit., gives for cis-compound, b. p. $174 \cdot 6-175 \cdot 2^{\circ}, d_{4^{\circ}}^{20^{\circ}} 0 \cdot 922, n_{\mathrm{D}}^{20{ }^{\circ}} 1 \cdot 455$: for trans-compound, b. p. 171.5-172.5 $, d_{4^{\circ}{ }^{20}} 0.918, n_{\mathrm{D}}^{20^{\circ}} 1.458$; Eisenlohr, loc. cit., gives, for cisform, b. p. $175 \cdot 5^{\circ} / 760 \mathrm{~mm} ., d_{4}^{20^{\circ}} 0.9250, n_{a}^{20^{\circ}} 1 \cdot 45873, n_{\mathrm{He}}^{20^{\circ}} 1 \cdot 46086, n_{\beta}^{20^{\circ}} 1 \cdot 46692, n_{\gamma}^{20^{\circ}} 1 \cdot 47196$: for trans-form, b. p. $174 \cdot 5-174 \cdot 7^{\circ} / 762 \mathrm{~mm}$., $d_{4^{\circ}}^{20^{\circ}} 0.9234, n_{a}^{20^{\circ}} 1 \cdot 45723, n_{\mathrm{He}}^{20^{\circ}} 1 \cdot 45931, n_{\beta}^{20^{\circ}} 1 \cdot 46544$, $n_{\gamma}^{20^{\circ}} 1 \cdot 47020$.)

Hydrocarbon (II) from 3-Methylcyclohexanol.-55. G. of the pure alcohol and 135 g . of phosphoric oxide were heated in a glycerol-bath at $165-175^{\circ}$; the liquid passed over at 102$106^{\circ}$ (22 g.). This was dried over anhydrous sodium sulphate and distilled from a fractionating Claisen flask; over 85% passed over at $104 \cdot 5-105 \cdot 5^{\circ} / 761 \mathrm{~mm}$., and about 10% at $107-109^{\circ} /$ 761 mm . The main fraction was redistilled, and a middle fraction, b. p. $105^{\circ} / 761 \mathrm{~mm}$., was collected for the physical measurements. $\quad M=96 \cdot 17 ; n_{\mathrm{C}} 1 \cdot 43848, n_{\mathrm{D}} 1 \cdot 44114, n_{\mathrm{F}} 1 \cdot 44757, n_{\mathrm{G}}$
$1.45256 ; R_{\mathrm{C}} 31.82, R_{\mathrm{D}} 31.99, R_{\mathrm{F}} 32 \cdot 39, R_{\mathrm{G}^{\prime}} 32 \cdot 71 ; R_{\mathrm{G}^{\prime}-\mathrm{c}} 0 \cdot 89, R_{\mathrm{F}-\mathrm{c}} 0.57 ; ~ M n_{\mathrm{D}}^{20 \cdot} 138 \cdot 59$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 7941, d_{4^{\circ}}^{42}{ }^{\circ} 0 \cdot 7769, d_{4^{6}}^{6 \cdot 4^{\circ}} 0.7586$.

$\gamma_{20^{\circ}}=25 \cdot 50(0 \cdot 11) . \quad$ Apparatus A.											
t.	h.	H.	$d_{4}^{\text {cos. }}$	γ.	P.	t.	h.	H.	$d^{\text {c }}$.	γ.	P.
$19 .{ }^{\circ}$	17.31	17.07	0.7948	25.40	271.7	62.2°	14.94	$14 \cdot 70$	0.7588	$20 \cdot 89$	271.2
$41 \cdot 7$	16.02	15.78	0.7772	$22 \cdot 97$	271-1					Mean	271.3

Reduction of hydrocarbon (II). 20 G . of (II), b. p. $104 \cdot 5-105 \cdot 5^{\circ} / 761 \mathrm{~mm} ., 125$ c.c. of rectified spirit, and 0.35 g . of Adams's platinum catalyst were shaken in hydrogen, but only 80% of the theoretical volume had been absorbed in 30 hours, reaction then being extremely slow. The product was worked up as described under hydrocarbon (I) (18 g .) and was distilled from sodium ; most passed over at $100.8-101 \cdot 0^{\circ} / 759 \mathrm{~mm}$., but $c a .10 \%$ distilled up to $102^{\circ} / 759 \mathrm{~mm}$. This decolourised 1% potassium permanganate slightly. 14 G . of this liquid and 0.3 g . of Adams's platinum catalyst were shaken in hydrogen for 8 hours, the theoretical absorption having then taken place. The liquid was poured from the platinum and distilled from sodium; it boiled constantly at $100 \cdot 5-100.7^{\circ} / 771 \mathrm{~mm}$. This had $d_{4^{\circ}}^{20^{\circ}} 0.7703, n_{\mathrm{C}} 1.42151, n_{\mathrm{D}} 1.42377$, $n_{\mathrm{F}} 1.42911, n_{\mathrm{G}}, 1.43303$; these properties are in agreement with those for methylcyclohexane prepared from 1-methyl- Δ^{1}-cyclohexene (p. 1333).

4-Methylcyclohexanol.- 90 G. of 4-methylcyclohexanone (ex bisulphite compound), 500 c.c. of ether, $375 \mathrm{c} . \mathrm{c}$. of water, and 80 g . of sodium yielded 82 g . of the alcohol, b. p. $171 \cdot 5-173^{\circ}$, and 5 g . of a high-b. p. solid residue. Upon redistillation, pure 4 -methylcyclohexanol boiled constantly at $172^{\circ} / 763 \mathrm{~mm} . \quad M=114 \cdot 18 ; n_{\mathrm{C}} 1 \cdot 45395, n_{\mathrm{D}} 1 \cdot 45647, n_{\mathrm{F}} 1 \cdot 46203, n_{\mathrm{G}}, 1 \cdot 46616 ; R_{\mathrm{C}}$ $33.90, R_{\mathrm{D}} 34.06, R_{\mathrm{F}} 34.41, R_{\mathrm{G}} 34.68 ; R_{\mathrm{G}-\mathrm{C}} 0.78, R_{\mathrm{F}-\mathrm{c}} 0.51 ; M n_{\mathrm{D}}^{20^{\circ}} 166.30$. Densities determined : $d_{4^{\circ}}^{20} 0 \cdot 9122, d_{4}^{61 \cdot 7^{\circ}} 0 \cdot 8831, d_{4^{\circ}}^{8 \cdot 2^{\circ}} 0 \cdot 8631$.

t.	$\gamma_{20^{\circ}}=27.63$ (0.06). Apparatus A.										
	h.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.	t.	h.	H.	$d^{\text {a }}$.	γ.	P.
$20.9{ }^{\circ}$	$16 \cdot 40$	$16 \cdot 16$	0.9116	27.58	$287 \cdot 1$	86.1°	$14 \cdot 49$	$14 \cdot 25$	$0 \cdot 8639$	23.05	288.5
$60 \cdot 4$	$15 \cdot 27$	$15 \cdot 13$	$0 \cdot 8840$	$25 \cdot 04$	288.9					Mean	$288 \cdot 2$

(Sabatier and Mailhe, Compt. rend., 1904, 139, 344, give b. p. 172.5-173 $/ 745 \mathrm{~mm} ., d_{4^{\circ}}^{10^{\circ}} 0.924$, $n_{\mathrm{D}}^{14^{\circ}} 1.462$; Haller, Bull. Soc. chim., 1905, 33, 77, gives b. p. 173-173.5 $, \dot{a}_{4^{\circ}}^{20^{\circ}} 0 \cdot 9170, n_{\mathrm{D}}^{20^{\circ}} 1.4573$; v. Auwers, Hinterseber, and Treppmann, loc. cit., give inter alia, b. p. $74 \cdot 7-75 \cdot 2^{\circ} / 12 \mathrm{~mm}$., $d_{4 .}^{22 \cdot 5^{\circ}} 0.9183, n_{a}^{22 \cdot 5^{\circ}} 1-45366, n_{\mathrm{D}}^{22 \cdot 5^{\circ}} 1 \cdot 45594, n_{\beta}^{22 \cdot 5^{\circ}} 1.46160, n_{\gamma}^{22 \cdot 5^{\circ}} 1.46651 ; ~ v$. Auwers and Kolligs, Ber., 1922, 55, 45, give b. p. $172-173^{\circ}, d_{4^{16}}^{16 \cdot 3^{\circ}} 0.9192, n_{a}^{16 \cdot 3^{\circ}} 1 \cdot 45742, n_{\mathrm{He}^{16}}^{16 \cdot 3^{\circ}} 1 \cdot 45959, n_{\beta}^{16 \cdot 3^{\circ}} 1 \cdot 46558$, $n_{\gamma}^{16 \cdot 3^{\circ}} 1 \cdot 47025$; Skita, loc. cit., gives for cis-compound, b. p. 173.5-173.8 $, d_{4^{\circ}}^{20^{\circ}} 0 \cdot 920, n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 4592$: for trans-compound, b. p. $172 \cdot 8-173 \cdot 5^{\circ}, d_{4^{\circ}}^{20^{\circ}} 0.918, n_{\mathrm{D}}^{20^{\circ}} 1.4586$; Eisenlohr, loc. cit., gives for cis-compound, b. p. $175 \cdot 5^{\circ} / 760 \mathrm{~mm}$., $d_{4^{\circ}}^{20^{\circ}} 0.9223, n_{a}^{20^{\circ}} 1.45704, n_{\mathrm{He}}^{20^{\circ}} 1.45926, n_{\beta}^{20^{\circ}} 1 \cdot 46534, n_{\gamma}^{20^{\circ}}$ 1.47039 ; for trans-compound inter alia, b. p. $174 \cdot 5^{\circ} / 760 \mathrm{~mm} ., d_{4^{\circ}}^{20{ }^{\circ}} 0.9172, n_{a}^{20^{\circ}} 1.45503, n_{H e}^{20{ }^{\circ}}$ $1-45727, n_{\beta}^{20^{\circ}} 1 \cdot 46336, n_{\gamma}^{20^{\circ}} 1 \cdot 46831$.)

Hydrocarbon (III) from 4-Methylcyclohexanol.- 80 G . of the pure alcohol and 165 g . of phosphoric oxide were heated in a glycerol-bath at $160-170^{\circ} ; 32 \mathrm{~g}$. of liquid passed over at $104-$ 111°. The liquid was dried with anhydrous sodium sulphate and distilled; over 80% had b. p. $105-106^{\circ} / 765 \mathrm{~mm}$., and $c a .15 \%$ had b. p. $107 \cdot 5-108^{\circ} / 765 \mathrm{~mm}$., $d_{4^{\circ}}^{20 \cdot} 0 \cdot 8016, n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 4449$. The main fraction was redistilled, and the middle portion, b. p. $105 \cdot 5^{\circ} / 765 \mathrm{~mm}$., collected for the physical measurements. $\quad M=96.17 ; n_{\mathrm{C}} 1.43879, n_{\mathrm{D}} 1.44144, n_{\mathrm{F}} 1.44784, n_{\mathrm{G}} .1 .45267 ; R_{\mathrm{G}}$ $31.79, R_{\mathrm{D}} 31.96, R_{\mathrm{F}} 32.36, R_{\mathrm{G}}, 32.67 ; R_{\mathrm{G}^{\prime}-\mathrm{C}} 0.88, R_{\mathrm{F}-\mathrm{C}} 0.57$; $M n_{\mathrm{D}}^{20^{\circ}} 138 \cdot 62$. Densities determined : $d_{4^{\circ}}^{20{ }^{\circ}} 0 \cdot 7953, d_{4^{\circ}}^{41 \cdot 5^{\circ}} 0 \cdot 7797, d_{4^{6}}^{6 \cdot 9} 0 \cdot 7628$.

t.	$\gamma_{20^{\circ}}=25.42(0 \cdot 10) . \quad$ Apparatus A.										
	h.	H.	$d_{4}^{\text {l }}$.	γ.	P.	t.	h.	H.	$d^{4^{*}}$.	γ.	P.
$23.5{ }^{\circ}$	$17 \cdot 13$	16.89	$0 \cdot 7926$	$25 \cdot 07$	$271 \cdot 5$	$60.7{ }^{\circ}$	$15 \cdot 07$	14.83	$0 \cdot 7630$	$21 \cdot 19$	$270 \cdot 6$
41.7	16.08	$15 \cdot 84$	$0 \cdot 7795$	23.12	$270 \cdot 7$					Mean	$270 \cdot 9$

Reduction of hydrocarbon (III). 20 G . of (III), b. p. $105-106^{\circ} / 765 \mathrm{~mm}$., 125 c.c. of absolute alcohol, and 0.3 g . of Adams's platinum catalyst were shaken in hydrogen, 80% of the theoretical quantity being absorbed in 24 hours and the reaction then becoming extremely slow. The product was worked up as described under hydrocarbon (I) and fractionated from sodium ; most distilled at $101.0-101.5^{\circ} / 766 \mathrm{~mm}$., but $c a$. 10% passed over up to $102 \cdot 5^{\circ} / 766 \mathrm{~mm}$. This decolourised 1% potassium permanganate slightly. 14.5 G . of this liquid and 0.2 g . of Adams's platinum catalyst were shaken in hydrogen for 7 hours, theoretical absorption of hydrogen
taking place. The liquid was decanted from the platinum and distilled over sodium. It distilled constantly at $100 \cdot 7-100 \cdot 9^{\circ} / 776 \mathrm{~mm}$., and had $d_{4^{\circ}}^{20} 0 \cdot 7702, n_{\mathrm{C}} 1 \cdot 42132, n_{\mathrm{D}} 1 \cdot 42356, n_{\mathrm{F}} 1 \cdot 42891$, $n_{\text {G. }}$ - $1 \cdot 43283$.
cycloHeptanol. -100 G . of suberone (ex bisulphite compound), 555 c.c. of ether, 420 c.c. of water, and 88 g . of sodium yielded 72 g . of the alcohol, b. p. $183-187^{\circ}$, and 24 g . of a crystalline high-b. p. residue (compare Markownikow, Annalen, 1903, 327, 66). Upon redistillation, cycloheptanol boiled constantly at $185^{\circ} / 761 \mathrm{~mm} . \quad M=114 \cdot 18 ; n_{\mathrm{C}} 1 \cdot 47220, n_{\mathrm{D}} 1 \cdot 47470, n_{\mathrm{F}}$ $1.48087, n_{\mathrm{G}} .1 .48502 ; R_{\mathrm{C}} 33.75, R_{\mathrm{D}} 34 \cdot 00, R_{\mathrm{F}} 34.28, R_{\mathrm{G}} .34 .53 ; R_{\mathrm{G} \cdot-\mathrm{c}} 0.78, R_{\mathrm{F}-\mathrm{c}} 0.53 ; M n_{\mathrm{D}}^{20^{\circ}}$ 168.38. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 9478, d_{4^{\circ}}^{61 \cdot 3^{\circ}} 0 \cdot 9152, d_{4^{86}}^{86} 0 \cdot 8946$.

$\gamma_{20^{\circ}}=33 \cdot 10(0 \cdot 09) . \quad$ Apparatus A.											
t.	h.	H.	$d_{\text {d }}{ }^{\text {a }}$.	γ.	P.	t.	h.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.
$13.5{ }^{\circ}$	$19 \cdot 12$	18.88	0.9530	33.69	288.7	$85 \cdot 7^{\circ}$	$16 \cdot 67$	16.43	$0 \cdot 8956$	26.93	$290 \cdot 4$
61.4	17.53	17.29	0.9151	29.61	$291 \cdot 1$					Mean	$290 \cdot 1$

(Markownikow, J. pr. Chem., 1894, 49, 415, gives b. p. 184-185 ${ }^{\circ}, d_{15^{\circ}}^{15^{\circ}} 0.9595$; Willstätter, Annalen, 1900, 317, 218, gives b. p. 184-185 .)

Action of Phosphoric Oxide upon cycloHeptanol.-60 G. of cycloheptanol and 135 g . of phosphoric oxide were heated in a glycerol-bath at $150-160^{\circ} ; 27 \mathrm{~g}$. of a liquid passed over first at $109-110^{\circ}$ and later at $114-116^{\circ}$. The distillate was dried over anhydrous sodium sulphate and fractionated. Distillation commenced at $107-108^{\circ} / 760 \mathrm{~mm}$., practically the whole passed over at $109-110^{\circ} / 760 \mathrm{~mm}$., and the last 2 c.c. at $111-113^{\circ} / 760 \mathrm{~mm}$. A middle fraction, b. p. $109-110^{\circ} / 760 \mathrm{~mm}$. had $d_{4^{2}}^{20^{\circ}} 0.8068, n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 4473$. For cycloheptene Markownikow (loc. cit.) gives b. p. 114.5- 115°, and Willstätter (loc. cit.) b. p. 115°. Harries and Tank (Ber., 1908, 41, 749) state that the distillation of cycloheptanol with phosphoric oxide yields "cycloheptene," $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 823, n_{D}^{20^{\circ}} 1.45301$, but they do not give a b. p.; they were unable to isolate any pimelic acid upon ozonolysis. The b. p., physical properties, and catalytic reduction of the product (see below) prove conclusively that it consists of a mixture of cycloheptene and a methylcyclohexene, isomerisation having occurred during the dehydration.

Catalytic reduction of liquid, b. p. $109-110^{\circ} / 760 \mathrm{~mm} . \quad 15 \mathrm{G}$. of the liquid, $50 \mathrm{c} . \mathrm{c}$. of absolute alcohol, and 0.4 g . of Adams's platinum catalyst were shaken in hydrogen, theoretical absorption occurring in 24 hours. The product was worked up as described under hydrocarbon (I), and the 14 g . of liquid thus obtained were distilled from sodium. Two fractions were obtained : (i) b. p. $104-106 \cdot 5^{\circ} / 747 \mathrm{~mm} ., 10 \mathrm{~g} ., d_{4^{\circ}}^{2 \circ^{\circ}} 0.7842, n_{\mathrm{D}}^{20^{\circ}} 1.4306$; (ii) b. p. $107-109^{\circ} / 747 \mathrm{~mm} ., 3.5 \mathrm{~g}$., $d_{4^{20}}^{20}$ $0.7870, n_{\mathrm{D}}^{20^{\circ}} 1 \cdot 4323$. It consisted clearly of a mixture of methylcyclohexane and cycloheptane.
cycloHeptyl Bromide.-To 70 g . of pure cycloheptanol, contained in a 1 -litre three-necked flask provided with a mercury-sealed stirrer, a dropping funnel, and a thermometer, and cooled in a mixture of ice and salt, were added 60 g . (10% excess) of redistilled phosphorus tribromide, (b. p. $170 \cdot 5-172^{\circ}$) during 2 hours, the temperature not being allowed to rise above 5° (compare Noller and Adams, J. Amer. Chem. Soc., 1926, 48, 1084). Stirring was continued for a further 4 hours, 500 c.c. of water were added after 12 hours, and the whole distilled in steam. The crude bromide (88 g .) was washed with 10% sodium carbonate solution, water, dried (anhydrous sodium sulphate), and distilled ; practically the whole passed over at $62-63^{\circ} / 6 \mathrm{~mm}$. (70 g .). A middle fraction, b. p. $62 \cdot 5^{\circ} / 6 \mathrm{~mm}$., was collected for the physical measurements. $M=177 \cdot 09$; $n_{\mathrm{C}} 1.49521, n_{\mathrm{D}} 1.49911, n_{\mathrm{F}} 1.50647, n_{\mathrm{G}} 1.51023 ; R_{\mathrm{C}} 41 \cdot 16, R_{\mathrm{D}} 41.43, R_{\mathrm{F}} 41 \cdot 95, R_{\mathrm{G}} 42 \cdot 23$; $R_{G^{\prime}-\mathrm{c}} 1 \cdot 17, R_{\mathrm{F}-\mathrm{c}} 0.79 ; M n_{\mathrm{D}}^{20^{\circ}} 265 \cdot 47$.

t.	$\gamma_{20^{\circ}}=34.31(0.09) . \quad$ Apparatus A.										
	h.	H.	$d_{4}{ }^{\text {cto }}$.	γ.	P.	t.	h.	H.	$d_{\mathbf{4}^{\text {c }}}{ }^{\text {c }}$.	γ.	P.
$15.7{ }^{\circ}$	14.95	14.71	1.2599	$34 \cdot 70$	$341 \cdot 1$	$87.4{ }^{\circ}$	12.99	12.75	$1 \cdot 1839$	28.26	$344 \cdot 9$
$61 \cdot 9$	13.91	$13 \cdot 67$	$1 \cdot 2103$	$30 \cdot 98$	$345 \cdot 7$					Mean	$343 \cdot 2$

(Zelinsky, Ber., 1902, 35, 2691, gives b. p. $75^{\circ} / 12 \mathrm{~mm} ., d_{4{ }^{22^{\circ}}} 1 \cdot 2887, n_{\mathrm{D}}^{22^{\circ}} 1 \cdot 4996$; Markownikow, A nnalen, $1903 ; 327,63$, gives b. p. $101 \cdot 5^{\circ} / 40 \mathrm{~mm} ., d_{15^{\circ}}^{10^{\circ}} 1 \cdot 299$.)

Action of Alcoholic Potassium Hydroxide upon cycloHeptyl Bromide : Preparation of cyclo-Heptene.-A mixture of 50 g . of the bromide, 50 g . of potassium hydroxide, and $125 \mathrm{c} . \mathrm{c}$. of rectified spirit was refluxed on the water-bath for 5 hours and then poured into 1 l. of water. The upper layer (27 g .) was separated, dried with calcium chloride, and distilled in a fractionating Claisen flask over sodium; 21 g . of cycloheptene, b. p. $113 \cdot 5-116^{\circ} / 774 \mathrm{~mm}$. (chiefly $115-116^{\circ} /$ 774 mm .) were obtained, together with about 2 g . of a pleasant-smelling, halogen-free liquid, b. p. $172-181^{\circ}$; the latter was probably cycloheptyl ethyl ether but was not further investigated.

The hydrocarbon was redistilled over sodium, and a middle fraction, b. p. 114.5-115 $/ 774 \mathrm{~mm}$., collected for the physical measurements. $M=96 \cdot 17 ; n_{\mathrm{C}} 1.45450, n_{\mathrm{D}} 1.45737, n_{\mathrm{F}} 1.46438, n_{\mathrm{G}}$. $1.46966 ; R_{\mathrm{C}} 31 \cdot 58, R_{\mathrm{D}} 31 \cdot 75, R_{\mathrm{F}} 32 \cdot 17, R_{\mathrm{G}^{\prime}} 32 \cdot 49 ; R_{\mathrm{G}^{\prime}-\mathrm{c}} 0.91, R_{\mathrm{F}-\mathrm{c}} 0 \cdot 59 ; \quad M n_{\mathrm{D}}^{20^{\circ}} 140 \cdot 16$. Densities determined : $d_{4^{\circ}}^{20{ }^{\circ}} 0 \cdot 8255, d_{4^{4}}^{41 \cdot 4^{\circ}} 0 \cdot 8059, d_{4^{\circ}}^{62 \cdot 1^{\circ}} 0 \cdot 7884$.

t.	$\gamma_{20^{\circ}}=28.02(0.11) . \quad$ Apparatus A.										
	h.	H.	$d_{4}^{\text {to }}$.	γ.	P.	t.	h.	H.	$d_{4}^{t^{\text {c }}}$.	γ.	P.
17.9°	18.48	18.24	0.8272	28.25	$268 \cdot 0$	62.0°	16.00	$15 \cdot 76$	0.7885	$23 \cdot 27$	$268 \cdot 2$
42.1	$17 \cdot 11$	16.87	$0 \cdot 8052$	25-44	$268 \cdot 4$					Mean	$268 \cdot 2$

(Willstätter, Annalen, 1901, 317, 221, gives b. p. 115°; Markownikow, J. pr. Chem., 1894, 49, 429, b. p. $114.5-115.5^{\circ}$, $d_{20^{\circ}}^{20^{\circ}} 0.8245$; Rosanow, Centr., 1924, i, 2425, b. p. $113-115^{\circ}, d_{40^{2}}^{20^{\circ}}$ $0.8228, n_{\mathrm{D}}^{20^{\circ}} 1.4552$; Godchot, loc. cit., b. p. $114-115^{\circ} / 752 \mathrm{~mm} ., d_{13 \cdot 5^{\circ}}^{13 \cdot 5^{\circ}} 0 \cdot 8359, n_{\mathrm{D}}^{13 \cdot 5^{\circ}} 1.4607, n_{\mathrm{H}_{\cdot} \cdot a}^{13 \cdot 5^{\circ}}$ 1•4733, P 266•17.)

Reduction of cycloHeptene : Preparation of cycloHeptane.-14 G. of cycloheptene, 75 c.c. of absolute alcohol, and 0.4 g . of Adams's platinum catalyst were shaken in hydrogen; theoretical absorption took place in 3 hours but shaking was continued for a further 5 hours. The product was worked up as before; the liquid (13.5 g)) was dried with calcium chloride and distilled from sodium in a fractionating Claisen flask. The whole distilled at $116 \cdot 5-118 \cdot 5^{\circ} / 758 \mathrm{~mm}$., and a middle fraction, b. p. $117 \cdot 5-118^{\circ} / 758 \mathrm{~mm}$., was collected for the physical measurements. $M=98.18 ; n_{\mathrm{C}} 1.44090, n_{\mathrm{D}} 1.44355, n_{\mathrm{F}} 1.44906, n_{\mathrm{G}^{\prime}} 1.45288 ; R_{\mathrm{C}} 32 \cdot 01, R_{\mathrm{D}} 32 \cdot 18, R_{\mathrm{F}} 32 \cdot 53$, $R_{\mathrm{G}} 32.76 ; R_{\mathrm{G}}{ }^{\prime}-\mathrm{c} 0.75, R_{\mathrm{F}-\mathrm{c}} 0.52 ; M n_{\mathrm{D}}^{2 \circ^{\circ}} 141.73$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 0.8098, d_{4^{\circ}}^{41.0^{\circ}}$ $0 \cdot 7905, d_{4^{\circ}}^{61 \cdot 0^{\circ}} 0 \cdot 7733$.

$\gamma_{20^{\circ}}=27.93(0.12) . \quad$ Apparatus A.											
t.	h.	H.	$d_{4}^{\text {to }}$.	γ.	P.	t.	h.	H.	$d_{4}^{t^{\text {c }}}$.	γ.	P.
$16.1{ }^{\circ}$	18.89	18.65	0.8133	28.40	$278 \cdot 7$	61.0°	$16 \cdot 18$	$15 \cdot 94$	0.7733	23.08	$278 \cdot 5$
$41 \cdot 0$	$17 \cdot 49$	$17 \cdot 25$	0.7905	$25 \cdot 53$	$279 \cdot 3$					Mean	278.8

(Markownikow, Annalen, 1903, 327, 63, gives b. p. 117-117.5 $/ 763 \mathrm{~mm}$., $d_{0^{\circ}}^{20} 0.8093$; Willstätter and Kametaka, Ber., 1908, 41, 1483, give b. p. $116 \cdot 4-116 \cdot 8^{\circ} / 726 \mathrm{~mm}$., $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 8108$, $n_{\mathrm{D}}^{20^{\circ}} 1.44521$; Rosanow, loc. cit., gives b. p. $118-120^{\circ}, d_{4^{\circ}}^{20^{\circ}} 0 \cdot 8099, n_{\mathrm{D}}^{20^{\circ}} 1.4440$; Godchot, loc. cit., b. p. $119 — 120^{\circ}, d_{13 \cdot 5^{\circ}}^{13 \cdot 5} 0.8136, n_{\mathrm{D}}^{13 \cdot 5^{\circ}} 1.4466, n_{\mathrm{Hg}-\mathrm{a}}^{13 \cdot 5^{\circ}} 1 \cdot 4563, P 278$.)

Note on Cyclic Alcohols.-All the cyclic aicohols were viscid and somewhat hygroscopic liquids; the density and refractive index changed slightly on exposure to air. The measurements recorded were made upon freshly distilled specimens. The meniscuses in the capillary tubes at temperatures above that of the room were slightly hazy; it is possible that the contact angle is not quite zero in these cases

The following data complete those for substituted glutaric esters (Part II, loc. cit.).

* Methyl and Ethyl 2-Methylcyclohexane-1 : 1-diacetate.-These esters were prepared in good yield by refluxing the pure acid, m. p. 152° (German and Vogel, J., 1937, 1110), with the pure dry alcohol, pure sodium-dried benzene, and concentrated sulphuric acid for several hours (compare Vogel, J., 1928, 2021 ; 1933, 338). Methyl ester: b. p. $139^{\circ} / 4 \mathrm{~mm} . ; M=242.31$ (Found : $\mathrm{C}, 66 \cdot 4 ; \mathrm{H}, 9 \cdot 1 . \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\mathrm{C}, 64 \cdot 4 ; \mathrm{H}, 9.2 \%$); $n_{\mathrm{C}} 1 \cdot 46688, n_{\mathrm{D}} 1 \cdot 46898, n_{\mathrm{F}} 1 \cdot 47477$, $n_{\mathrm{G}^{\prime}} 1 \cdot 47907 ; R_{\mathrm{C}} 62 \cdot 46, R_{\mathrm{D}} 62 \cdot 70, R_{\mathrm{F}} 63 \cdot 36, R_{\mathrm{G}}, 63 \cdot 85 ; R_{\mathrm{G}-\mathrm{c}} 1 \cdot 39, R_{\mathrm{F}-\mathrm{c}} 0.90 ; M n_{\mathrm{D}}^{20} 355 \cdot 14$. Ethyl ester (Found : C, 66.4; H, 9.6. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4}$ requires C, $66.6 ; \mathrm{H}, \mathbf{9 . 7 \%} \%$), b. p. $145^{\circ} / 4 \mathrm{~mm}$; $M=270 \cdot 36 ; n_{\mathrm{C}} 1.46077, n_{\mathrm{D}} 1.46314, n_{\mathrm{F}} 1.46885, n_{\mathrm{G}}, 1.47303 ; R_{\mathrm{C}} 71 \cdot 82, R_{\mathrm{D}} 72 \cdot 12, R_{\mathrm{F}} 72 \cdot 90$, $R_{\mathrm{G}^{\prime}} .73 .45 ; R_{\mathrm{a}^{\prime}-\mathrm{C}} 1.63, R_{\mathrm{F}-\mathrm{c}} 1.08 ; M n_{\mathrm{D}}^{20^{\circ}} 395 \cdot 56$.

Methyl ester.
Densities determined : $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0738, d_{4^{\circ}}^{6 \cdot \cdot 3^{\circ}} 1 \cdot 0417, d_{4^{8 \cdot}}^{8 \cdot 9^{\circ}} 1 \cdot 0224$.

t.	$\gamma_{20^{\circ}}=35 \cdot 70(0 \cdot 10) . \quad$ Apparatus A.										
	h.	H.	$d_{4}^{\text {tio }}$.	γ.	P.	t.	h.	H.	$d_{4}^{\text {l }}$.	γ.	P.
$21.0{ }^{\circ}$	17.96	17.72	1.0730	35.60	$550 \cdot 4$	86.1°	15.48	$15 \cdot 24$	1.0234	$29 \cdot 21$	$549 \cdot 1$
61.3	16.42	$16 \cdot 18$	1.0425	31-58	$549 \cdot 8$					Mean	549•8

Ethyl ester.
Densities determined : $d_{4}^{20^{\circ}} 1 \cdot 0326, d_{4}^{61 \cdot \tau^{\circ}} 1 \cdot 0000 ; d_{4^{86}}^{86} 0 \cdot 9829$.
$\gamma_{20^{\circ}}=33.33(0.09) . \quad$ Apparatus B.

t.	h.	H.	$d_{4^{\circ}}{ }^{\circ}$.	γ.	P.	t.	h.	H.	$d_{4}^{t^{\circ}}$.	γ.	P.
20.5°	13.99	13.75	$1 \cdot 0332$	33-28	$629 \cdot 1$	$87.4{ }^{\circ}$	12.11	11.87	0.9818	27.33	629.6
$62 \cdot 1$	12.77	$12 \cdot 53$	0.9997	29-37	$629 \cdot 6$					Mean	$629 \cdot 4$

Note, added in proof, September 2nd, 1938.-Since this paper was written, Wibaut, Langedijk, Smittenberg, and Hoog (Chem. and Ind., 1938, 57, 753) have described the isolation of only one form of methylcyclohexane by the hydrogenation of pure toluene at 150° under 100 atm. pressure in the presence of nickel-kieselguhr as catalyst. This had b. p. $100 \cdot 80^{\circ}, d_{4^{\circ}}^{20 \cdot 0^{\circ}}$ 0.76944 , and $n^{20 \cdot 00^{\circ}}$ as follows:

$\mathrm{C}(6563)$	$d_{\mathrm{He}_{\mathrm{o}}}(5876)$	$\mathrm{F}(4861)$	$\mathrm{G}^{\prime}(4341)$
1.42085	1.42310	1.42838	1.43285

These properties agree well with those of the $\left(B^{\prime}\right)$ form described on p. 1324. This would therefore seem to be a stable modification (compare Vogel, Chem. and Ind., 1938, 57, 541, 772).

The author's thanks are tendered to Imperial Chemical Industries, the Royal Society, and the Dixon Fund of the University of London for grants which have helped to defray the heavy expenses of this research.

Woolwich Polytechnic, London, S.E. 18.
[Received, June 8th, 1938.]

